
Congestion-aware Evacuation Routing using Augmented Reality Devices

Zeyu Zhang1 Hangxin Liu1 Ziyuan Jiao1 Yixin Zhu1,2 Song-Chun Zhu1,2

Abstract— We present a congestion-aware routing solution
for indoor evacuation, which produces real-time individual-
customized evacuation routes among multiple destinations while
keeping tracks of all evacuees’ locations. A population density
map, obtained on-the-fly by aggregating locations of evacuees
from user-end Augmented Reality (AR) devices, is used to model
the congestion distribution inside a building. To efficiently
search the evacuation route among all destinations, a variant of
A? algorithm is devised to obtain the optimal solution in a single
pass. In a series of simulated studies, we show that the proposed
algorithm is more computationally optimized compared to
classic path planning algorithms; it generates a more time-
efficient evacuation route for each individual that minimizes
the overall congestion. A complete system using AR devices
is implemented for a pilot study in real-world environments,
demonstrating the efficacy of the proposed approach.

I. INTRODUCTION

U.S. Federal Emergency Management Agency (FEMA)
statistics [1] have revealed that 4.68 million in-building fires
happened in a 10-year period of 2007 to 2016, along with
27,000 deaths and 139,925 fatal injuries. Although modern
buildings often provide detailed 2D floor plans and clear
emergency exit signs, tenants in general still take extra time
in wayfinding during emergencies [2] due to fear, chaos,
gridlock traffic, etc., which jeopardizes their evacuation
efficiency. In addition, such static information lacks real-time
dynamics in terms of congestion, which further impedes the
evacuation efficiency. Consequently, additional efforts must
be spent on education [3], [4], drills [5], [6], or training in
simulations [7], [8] in advance to reduce casualties.

However, such preventative training could be costly in
setup; it is also challenging to recreate and emulate the actual
(dangerous) scenarios realistically. Such insufficiency urges
the needs for an intuitive system that can direct naive users
with no prior experience or limited training to safely and
effectively evacuate during actual emergencies.

In real-world settings, there are two main difficulties that
prevent existing methods to form an effective means of evalu-
ation. First, although the evacuation time has been identified
as a vital factor [9] to improve evacuation efficiency, the
majorities of the prior methods only consider the layout of
the building (e.g., the distance between two key points, the
width of a hallway), but not the congestion condition during
the evacuation. Although the localization and navigation
methods developed for indoor mobile robots [10] could be

1 UCLA Center for Vision, Cognition, Learning, and Autonomy (VCLA)
at Statistics Dept. Emails: {zeyuzhang, hx.liu, zyjiao,
yixin.zhu}@ucla.edu, sczhu@stat.ucla.edu.

2 International Center for AI and Robot Autonomy (CARA)
The work reported herein was supported by ONR MURI N00014-16-1-

2007, DARPA XAI N66001-17-2-4029, and ONR N00014-19-1-2153.

Fig. 1: The architecture and data flow of the proposed
system. By streaming the locations from the user-end devices
(e.g., AR headsets, cellphones), the remote server gathers
population distribution of the environment in real-time. The
centralized information is used to generate a time-efficient
evacuation route and augment that to a user’s view.

adapted to guide evacuees [11], [12], and several localization
methods using various devices or sensors can effectively
provide individual’s location, it remains challenging to take
the overall congestion into account in evacuation routing.
Second, the process of perceiving, analyzing, and deciding
the evacuation route needs to be in real-time for multiple
users, requiring a time-efficient path planning algorithm that
can handle a large number of queries.

To address these challenges, this paper leverages the recent
advancement of cloud computing with the growing avail-
ability and throughput of the indoor wireless network. As
illustrated in Fig. 1, by streaming the real-time localization
from the edge devices, a population density map can be
generated in a remote server by aggregating individual’s loca-
tions; higher density indicates more congestion (see Fig. 2).
A congestion-aware evacuation routing algorithm is devised
to provide the most efficient evacuation route by searching
among all possible destinations. A parallel asynchronous
design of the proposed algorithm is further developed to
support thousands of path planning queries in real-time. To
validate the proposed method and system, a pilot study was
conducted using a complete system implemented with the
Microsoft HoloLens AR platform.

A. Related Work

Localization of evacuees is a prerequisite in providing an
efficient evacuation and modeling the congestion condition.
In addition to a typical localization setup in robotics [10],
RFID tags [11], info points [12], [13], images [14], and the
received WiFi [15], [16] or Bluetooth [17] wireless signals
are introduced to improve the localization accuracy under
an emergency. However, they require some infrastructures

2020 IEEE International Conference on Robotics and Automation (ICRA)
31 May - 31 August, 2020. Paris, France

978-1-7281-7395-5/20/$31.00 ©2020 IEEE 2798

deployed in advance and extra efforts at gathering localiza-
tion information from individuals. Multi-robot localization
methods can obtain each robot’s location via a peer-to-
peer broadcasting [18], [19], but they are usually slow
in convergence, and the communication network between
robots could be unreliable in practice. To address such
deficiencies, the present work localize edge users using a
SLAM-based method and a cloud computing platform to
gather individuals’ locations in a centralized manner.

Typical path planning algorithms (e.g., A?, RRT?) can
be used for evacuation routing by minimizing evacuation
distance [20], [21], [22] or maximizing time efficiency [23],
[24], [25] to properly handle the planning requests from
a large number of agents [26], [27]. However, one of the
key assumptions is that the congestion condition is fixed
and provided upon planning. To take congestion into ac-
count, the field of multi-agent path finding has developed
various approaches to find collision-free paths for multiple
robots/agents [28], [29]. However, such approaches are still
brittle in large-scale due to limited capability of handling
dynamic changes of the congestion condition, possibly be-
cause adaptation to the changes of the congestion condition
in real-time is a non-trivial problem, requiring additional
engineering efforts. To handle hundreds of requests in real-
time with dynamic changes of the congestion condition, the
system presented in this paper jointly optimizes both distance
and time by considering the overall congestion on-the-fly and
developed a paralleled planning scheme.

AR technologies have received a considerable amount of
attention in various human-robot interaction settings [30],
[31], [32]. It affords an intuitive interaction to a naive user
by overlaying rich virtual visual aids on top of the observed
physical environment. In literature, several evacuation sys-
tems using AR technologies have been proposed, though
limited, to provide indoor evacuation assistance. Typical AR
devices, such as AR headsets [33], [34], [22], are equipped
with depth cameras and IMUs, capable of providing a precise
indoor localization. Due to these advantages, this paper
implements and validates the system using the state-of-the-
art AR headset, Microsoft HoloLens.

B. Contribution

This paper makes the following three contributions:
1) We propose and implement a real-time population density

map that models the congestion during the evacuation.
The population distribution is aggregated from decentral-
ized user-end devices to a centralized cloud server.

2) We propose and implement an efficient congestion-aware
evacuation routing algorithm that simultaneously searches
among all possible destinations in a single pass, providing
the most time-efficient route by utilizing the population
density map. A parallelized asynchronous solution of the
algorithm is also devised to support thousands of path
planning queries in real-time.

3) We prototype a complete evacuation system using the
Microsoft HoloLens as the user-end device. A pilot study

Fig. 2: Evacuation routing with a density map. (Top) The
floorplan and the distribution of evacuees (blue dots). (Bot-
tom) The population density map indicates the magnitude of
congestion. If a human agent (green star) followed the route
generated by a naive planner in terms of the shorted path
(in red) to Exit B, s/he would compete with other agents.
Instead, the proposed system suggests a further, but more
time-efficient evacuation route (in green) toward Exit D.

has been conducted to validate the viability and efficacy
of the proposed algorithm and system.

C. Overview

The remainder of the paper is organized as follows. Sec-
tion II introduces the construction of the population density
map. The congestion-aware evacuation routing algorithm is
described in Section III. Section IV evaluates the proposed
system in both simulation and real-world scenarios. Sec-
tion V concludes the paper with discussions.

II. POPULATION DENSITY MAP

Without the congestion information, individual evacuees
would only be able to choose a route by minimizing the
distance, incapable of considering the actual time needed.
Hence, an effective choice of evacuation route during emer-
gencies should take the congestion into account. This section
describes the proposed method that models the congestion as
a population density map aggregated from user-end devices.

A. Localization

Given a 2D floorplan, various SLAM methods could be
used for localization. Since devising a SLAM method is out
of the scope of this paper, an off-the-shelf solution based on
ORB-SLAM [35] is adopted and briefly described below.

The extracted ORB features [36] are rotation-invariant and
noise-resistant. The features yield a robust representation to
camera condition changes (e.g., auto-gain, auto-exposure,

2799

illumination changes), which is an important property in
emergency settings due to the varied lighting and rapid mo-
tions in evacuations. A feature matching process is performed
to produce a set of monocular keypoints. The DBoW2
algorithm [37] further matches these key points to a keyframe
of the environment by searching through the pre-built cov-
isibility graph [38]. A motion-only bundle adjustment [35]
uses the best-matched keyframe to determine and optimize
the camera pose, thus providing an evacuee’s location. This
process can be performed on typical AR headsets with built-
in cameras (e.g., HoloLens) or smartphones [12], [13], [14].

B. Population Distribution and Density Map

The population distribution is directly related to conges-
tion during emergencies. After performing the localization
on user-end devices (e.g., AR headsets, mobile phones), the
population distribution in the environment can be obtained by
aggregating all users’ locations to the cloud server through
the wireless local area networks.

A density map can be further computed based on the
population distribution to describe the congestion condition
in the environment. The density map is a two-dimensional
grid-like map built on top of the floorplan. Fig. 2 shows an
example of the density map with its corresponding popu-
lation distribution; the color bar indicates the magnitude of
congestion ρ at location (x, y):

ρx,y =
∑

(xi,yi)∈Cx,y

γNxi,yi√
2π

e−
(xi−x)2+(yi−y)2

2 , (1)

where Cx,y is a set of cells which forms a patch centered
at coordinate (x, y), N·,· the number of agents, and γ the
congestion coefficient, describing the influence radius of
every agent. The value of γ depends on the resolution of the
grid map; we set γ=5 in our experiment. The path planning
algorithm proposed in the subsequent section utilizes this
density map to estimate the congestion while planning an
evacuation route that better balances the distance and time.

III. EVACUATION ROUTING WITH DENSITY MAP

Consider the scenario shown in Fig. 2; if a naive planner
were used, the agent (green star) would follow the red path
to Exit B as it is the shortest. However, though further, it
may be more favorable to the agent to follow the green path
leading to Exit D with less congestion. This example illus-
trates the necessity of taking the density map into account
in evacuation routing. This section describes the proposed
congestion-aware evacuation routing algorithm that accounts
for the density of other evacuees in a route and performs
a centralized traffic control to avoid congestion and reduce
competition during the evacuation in an emergency.

At a high level, this algorithm is a variant of the classic
A? algorithm, which is designed for pathfinding in multi-
destination scenarios. It is modified (i) to search and select
the most time-efficient path among all candidate destinations
in a single pass, instead of searching individual destination
with multiple passes as classic A? does, and (ii) to avoid
explore all of the possible destinations due to the bounded

Algorithm 1: Congestion-aware Evacuation Routing
Input : Grid map: Ggrid

Density map: Gdensity

Start point: src
Destinations: DList= {dst1, dst2, . . . , dstn}

Output: A selected path from src to one of the
destinations dstk

1 Initialize the open list: OpenList= ∅
2 Initialize the closed list: ClosedList= ∅
3 Insert Node(src, null) to OpenList
4 while OpenList is not empty do
5 // Pop node with the least f-score
6 p ← OpenList.pop()
7 // Reach the best destination
8 if p== dst then
9 return TracePath(dst)

10 end
11 S ← FindSuccessors(p,Ggrid)
12 foreach s∈S do
13 foreach dst∈DList do
14 s.dst ← dst
15 s.g ← p.g + Cost(p, s,Gdensity)
16 s.h ← Heuristic(s, dst)
17 s.f ← s.g + s.h
18 if V alidate(s,OpenList, ClosedList) then
19 Insert s to OpenList
20 end
21 end
22 end
23 Insert p to ClosedList
24 end

cost: during each iteration, the algorithm only explores the
grid that has the smallest F-score along the direction of the
exits/destinations; see details of the algorithm in below.

Data Structure: In practice, the explored space is much
smaller compared to the exhausted Dijkstra search or A?

search with multiple passes. The algorithm is outlined in
Algorithm 1; it is performed based on a data structure Node.
Each Node p contains:
1) Position (p.pos) stores the (x, y) coordinates of the node

in the grid map.
2) Parent (p.parent) records the (x, y) coordinates from

which p.pos comes; p.parent=null indicates current
node is the start node.

3) Destination (p.dst) keeps the coordinates of the destina-
tion.

4) Total cost (p.c) represents the total cost from the start
position to p.pos.

5) Heuristic score (p.h) indicates how far from p.pos to
p.dst heuristically.

6) F-score (p.f) depicts the total estimated cost from the
start node to p.dst. Specifically, we have p.f = p.c+p.h.

Implementation details: The algorithm maintains two
lists; i.e., the OpenList and the ClosedList. The OpenList
stores nodes waited to be explored, and the ClosedList

2800

records nodes already visited. Each is implemented by a
heap-based priority queue, which stores all nodes in order,
and is further augmented with a hash table to look up
one of its elements in constant time. Both OpenList and
ClosedList support two operations: (i) pop() returns a node
with the least F-score and removes the node from the list, and
(ii) insert(p) inserts the node p into the list. See Algorithm 1
for an outline of the algorithm. Below, we detail some
important functions.
• Node(a, b) creates a new Node, whose pos field is a and
parent field is b.

• TracePath(dst) retraces the path from the start position
to dst.pos by recursively visiting the parent field.

• FindSuccessors(p, Ggrid) looks up the grid map Ggrid and
returns a list of nodes whose position is adjacent to p in
the Ggrid. By default, the parent field is set to p.

• The heuristic function Heuristic(s, dst) is defined as the
euclidean distance between s.pos and dst.pos.

• Validate(s, OpenList, ClosedList) determines whether the
node s should be inserted into the OpenList. The node
s would be added to OpenList if one of the following
conditions is satisfied: (i) s is not in the OpenList; (ii)
a node in the OpenList whose position is as same as s
but has a higher heuristic score f ; and (iii) a node in the
ClosedList whose position is as same as s but has a higher
total cost c. The key ideas behind these conditions are: (i) if
the node has not been explored, add it to the OpenList;
(ii) the node s may have a better solution than the one
at the same position in the OpenList to be explored; and
(iii) there is a better solution found to reach position s.pos,
therefore re-explore the position s.pos.

• Cost(p, s, Gdensity) calculates the cost of travelling from
p.pos to s.pos. The cost c is calculated by

c=β ·dist(s.pos, p.pos)+(1−β) ·Gdensity[s.pos], (2)

where dist(s.pos, p.pos) is the euclidean distance,
Gdensity[s.pos] looks up the density map and returns the
congestion estimation at position s.pos, β is a coefficient
that balances between distance and congestion estimation.

Fig. 3: Illustration of the parallelized asynchronous planning
scheme. Both Workers and Master run in separated processes
on a same multi-core machine.

Paralleled Asynchronous Planning: A paralleled
asynchronous planning scheme is introduced to more ef-
ficiently schedule the planning jobs requested by user-end
devices in a remote cloud server. Fig. 3 shows the high-
level design. The users’ job requests are evenly assigned to
multiple workers (e.g., CPU cores). Every worker maintains
a list of path planning requests and processes them in turns.
A worker periodically pushes the result back to the master,
who maintains user information, updates the density map,
and provides the latest population density to the user-end
devices. Such a design can significantly improve the planning
efficiency for a large number of users’ planning requests by
fully exploiting the computation power of remote servers.

IV. EXPERIMENTS

We first evaluated the proposed method in a simulated
indoor environment with crowds simulation to validate (i)
the necessity of the introduced density map for modeling the
congestion in terms of egress time, and (ii) the computational
efficiency of the proposed planning algorithm comparing to
classical planning algorithms.

The method is implemented in a proof-of-concept system
consisting of Microsoft HoloLens as the user-end device
and a regular blade server as the remote server. Additional
experiments are conducted in the physical environment to
qualitatively show the visual aids rendered by the system
and quantitatively evaluate the system through a pilot study.

A. Simulation Setup

A simulated environment (see Fig. 2) as a 2D map is con-
structed. The environment has a dimension of 100m×100m,
which is discretized into 100×100 grids. It simulates a floor-
plan of a typical school building that consists of classrooms,
offices, study rooms, auditoriums, etc. There are five exits
(EXIT A-E) in the environment.

The microscopic behaviors of the evacuees, such as the
speed of their movement affected by others, are also crucial
for a proper simulation in order to more realistically esti-
mate the overall evacuation efficiency. Given the population

(a) (b)

Fig. 4: Qualitative comparison of routing results. The agents’
marker types are assigned based on the exits they are directed
to. (a) Assigning the agents to their closest exit leads to
congestion and competition. (b) The proposed method directs
the agents in the dashed circles to another exit, though
further, to avoid congestion; thus is more time-efficient.

2801

Fig. 5: Quantitative comparison of the average number of
remained agents at each time step. The shaded color strips
indicate the 98% confidence interval over 100 trails.

(a)

(b) (c)

Fig. 6: (a) Average total egress time vs. map density—
average number of people per grid—of the scenario. Each
point represents an average of 250 runs. (b)(c)The points in
yellow and green shaded box denote examples of planning
results for 0.02 and 0.06 map density, respectively.

distribution, the evacuees’ movement is simulated by their
gait length using the SLIP model [39], [40], which has been
widely used to simulate bipedal locomotion; the maximum
allowable human gait length is computed to bound an evac-
uee’s movement and velocity.

B. Evacuation Efficiency

Using the simulation environment, the effectiveness of the
congestion modeling is evaluated by the total egress time–the
time for all agents to evacuate from the environment. Fig. 4
highlights the differences of the routing results between
simply finding the closest exits in terms of the distance and
the proposed method that directs agents to avoid congestion
by considering both distance and time. Figs. 5 and 6 further
quantitatively showcase the efficacy of the proposed method;
it yields a faster evacuation at every step and the final egress
time, especially when the population density is high.

C. Computation Efficiency

Fig. 7 shows the average run time (in log-scale) of 50
trails to generate the evacuation routing for up to 1,000

Fig. 7: The proposed method is more time-efficient compared
to Dijkstra and repeated A? path planning algorithm in a
single-core setting. It can be further paralleled to multi-
core computing setup with a significant performance gain,
achieving a real-time performance (around 1 second) to serve
1,000 users using 32 cores.

agents, wherein we compare the proposed method with A?

algorithm and Dijkstra algorithms. Although the proposed
algorithm runs significantly faster than classic approaches
using a single core, it still takes more than 10 seconds to
serve 1,000 users. This insufficiency is the core motivation
to introduce the paralleled asynchronous planning scheme
to take advantage of modern multi-core computers. The
proposed algorithm can be easily paralleled and distributed
into different cores; the computation time of using a dif-
ferent number of cores (2-32) is shown in Fig. 7. In our
experiments, the proposed method can achieve real-time
performance to serve 1,000 users with 32 cores.

D. System Prototype

The prototype system adopts the state-of-the-art AR head-
mount display, Microsoft HoloLens, as the user-end device.
Compared to other available AR headsets, HoloLens is the
first untethered AR head-mounted display that allows the
user to move freely in the space without being constrained
by cable connections, which is particularly crucial for evac-
uation applications. Integrated with 32-bit Intel Atom pro-
cessors, HoloLens equips with an IMU and multiple spatial-
mapping cameras to perform low-level computation onboard.
Using Microsoft’s Holographic Processing Unit, the users
can realistically view the augmented contents. The holograms
displayed on its screen are created by Unity3D, via which
various visual effects can be rendered.

A back-end server is deployed to handle computationally
intense jobs (e.g., density map construction, path planning).
The system in the server hosts a task scheduler, which coor-
dinates the computation sources and assigns the new-coming
user to different worker threads (see Fig. 3). Once the remote
server receives users’ locations, an evacuation path for every
user is generated (see Section III) and communicated back
to the corresponding user-end device.

As a proof-of-concept prototype, the system incorporates
two types of visual guidance: (i) the evacuation path to direct

2802

(a)

(b)

(c)

Fig. 8: An example of the evacuation process using an AR
headset in real world. (a) Planned path from the user’s
egocentric view using a Hololens AR headset. (b) Third-
person view. (c) Localization in the physical world.

a user to the most-efficient exit, which is updated on-the-fly
as the user’s location changes, and (ii) the visual symbols
instruct the users to interact with the environment during the
evacuation; for instance, as shown in the top row of Fig. 8, a
3D text, “Open the door,” is augmented to the door to guide
users’ critical actions, further improving a user’s reliance.

E. Human Study

We conducted a pilot study by recruiting 16 participants
to evaluate the effectiveness of the AR evacuation system
in a between-subject setting (N =8 for each group). Half
of the participants were in the baseline group and provided
only a 2D physical floorplan; they were asked to find a path
to evacuate in the physical world without any additional
information. The other half of the participants were in
the AR group, using the AR headset HoloLens with the
proposed evacuation system installed. Each subject has no
familiarization with the physical environments. The subjects
in AR group have no prior experience using AR devices.

Fig. 8 depicts examples of the evacuation process, where
the planned route from the user’s egocentric view is shown
in the top row, a third-person view is shown in the middle
row, and a real-world localization is shown in the bottom
row. Fig. 9 compares the results between the two groups.
The difference of escape time is statistically significant;
t(15)= 1.0, p=0.0056. Participants in AR group takes a
significantly less time (median: 40 seconds) to evacuate.
In contrast, the baseline group requires much more time
(median: 80 seconds) with a larger variance in terms of the
evacuation time. This result indicates the efficacy of using the
AR evacuation system in a real-world evacuation scenario.

V. CONCLUSION AND DISCUSSION

This paper proposes a congestion-aware evacuation rout-
ing solution using augmented reality. To alleviate the overall

40 60 80 100 120 140

Time [s]

Baseline Group

AR Group

Fig. 9: Box plot for all participants’ escape time in two
groups. Subjects in AR group take a significantly less time.

congestion during emergencies, the proposed system simul-
taneously tracks of all evacuees’ locations in real-time to
provide a time-efficient evacuation path for each individual
on-the-fly. The proposed method adopts the idea of edge
computing that leverages the computation power on both
user-end devices and the remote server. To further acceler-
ate the proposed method, a parallel asynchronous planning
scheme is devised to fulfill the demands of thousands of
planning queries from evacuees. The simulated experiments
demonstrated the effectiveness and efficiency of the proposed
method by achieving real-time evacuation routing for 1,000
users. The proposed method is also implemented on a
physical system using a Microsoft HoloLens and a remote
server. A pilot study has been conducted to demonstrate the
efficacy of the proposed method further.

Below, we discuss four related topics in greater depth.

Alternating between different routes: The proposed
method updates evacuation routes as the density map up-
dates. When the density map changes dramatically, e.g., a
large group of users suddenly connect to the system, the
system may suggest a completely different route and even
alternate back-and-forth. In this case, a possible solution
would be imposing extra constraints (e.g., a discount factor)
when re-routing an evacuee to another exit. Alternatively,
the density map only updates gradually as evacuees move
around; thus, minor disturbance of the system is unlikely to
cause such an alternation.

Integrating predictive modules in routing: In future
work, it is possible to integrate a predictive model (e.g.,
Hidden Markov Model) for evacuees’ movements, therefore
achieving a better estimation of the density map. Such a
predictive module could improve evacuation efficiency by
resolving potential congestion in advance.

Network accessibility: The presented system currently
relies heavily on the wireless local area network (e.g., WiFi)
due to the required communications between the back-end
server and HoloLens front ends. Under the situation where
such infrastructure is not available, alternative forms of
infrastructure (e.g., the wireless ad-hoc network, BlueTooth)
could be easily adapted to support the communication.

Adapting to other robot systems: The proposed
method and the paralleled asynchronous planning architec-
ture could be further adapted to other large-scale multi-agent
robot systems, which can leverage the power of distributed
edge computing and a centralized back-end server.

2803

REFERENCES

[1] “The united state federal emergency management agency statistics.”
Accessed: 2019-02-01.

[2] A. Schwering, J. Krukar, R. Li, V. J. Anacta, and S. Fuest, “Wayfinding
through orientation,” Spatial Cognition & Computation, vol. 17, no. 4,
pp. 273–303, 2017.

[3] K. Shiwaku and R. Shaw, “Proactive co-learning: a new paradigm
in disaster education,” Disaster Prevention and Management: An
International Journal, vol. 17, no. 2, pp. 183–198, 2008.

[4] V. Kholshchevnikov, D. Samoshin, A. Parfyonenko, and I. Belosokhov,
“Study of children evacuation from pre-school education institutions,”
Fire and Materials, vol. 36, no. 5-6, pp. 349–366, 2012.

[5] J. Ma, W. Song, W. Tian, S. M. Lo, and G. Liao, “Experimental study
on an ultra high-rise building evacuation in china,” Safety Science,
vol. 50, no. 8, pp. 1665–1674, 2012.

[6] C. Xudong, Z. Heping, X. Qiyuan, Z. Yong, Z. Hongjiang, and
Z. Chenjie, “Study of announced evacuation drill from a retail store,”
Building and Environment, vol. 44, no. 5, pp. 864–870, 2009.

[7] M. Xi and S. P. Smith, “Simulating cooperative fire evacuation training
in a virtual environment using gaming technology,” in Virtual Reality
(VR), 2014.

[8] C. Li, W. Liang, C. Quigley, Y. Zhao, and L.-F. Yu, “Earthquake safety
training through virtual drills,” IEEE Transactions on Visualization and
Computer Graph (TVCG), vol. 23, no. 4, pp. 1275–1284, 2017.

[9] C. Arbib, H. Muccini, and M. T. Moghaddam, “Applying a network
flow model to quick and safe evacuation of people from a building: a
real case.,” RSFF, vol. 18, pp. 50–61, 2018.

[10] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[11] L. Chittaro and D. Nadalutti, “Presenting evacuation instructions on
mobile devices by means of location-aware 3d virtual environments,”
in International conference on Human computer interaction with
mobile devices and services, 2008.

[12] A. Mulloni, H. Seichter, and D. Schmalstieg, “Indoor navigation with
mixed reality world-in-miniature views and sparse localization on
mobile devices,” in International Working Conference on Advanced
Visual Interfaces, 2012.

[13] A. Mulloni, H. Seichter, and D. Schmalstieg, “Handheld augmented
reality indoor navigation with activity-based instructions,” in Interna-
tional conference on human computer interaction with mobile devices
and services, 2011.

[14] J. Ahn and R. Han, “An indoor augmented-reality evacuation system
for the smartphone using personalized pedometry,” Human-Centric
Computing and Information Sciences, vol. 2, no. 1, p. 18, 2012.

[15] A. Alnabhan and B. Tomaszewski, “Insar: Indoor navigation system
using augmented reality,” in ACM SIGSPATIAL International Work-
shop on Indoor Spatial Awareness, 2014.

[16] M. Penmetcha, A. Samantaray, and B.-C. Min, “Smartresponse: Emer-
gency and non-emergency response for smartphone based indoor
localization applications,” in International Conference on Human-
Computer Interaction, 2017.

[17] C. Shao, B. Islam, and S. Nirjon, “Marble: Mobile augmented reality
using a distributed ble beacon infrastructure,” in International Confer-
ence on Internet-of-Things Design and Implementation, 2018.

[18] S. I. Roumeliotis and G. A. Bekey, “Distributed multirobot localiza-
tion,” IEEE transactions on robotics and automation, vol. 18, no. 5,
pp. 781–795, 2002.

[19] E. D. Nerurkar, S. I. Roumeliotis, and A. Martinelli, “Distributed
maximum a posteriori estimation for multi-robot cooperative local-
ization,” in International Conference on Robotics and Automation
(ICRA), 2009.

[20] J. Kim and H. Jun, “Vision-based location positioning using aug-
mented reality for indoor navigation,” Transactions on Consumer
Electronics, vol. 54, no. 3, pp. 954–962, 2008.

[21] K. Liu, G. Motta, and T. Ma, “Xyz indoor navigation through
augmented reality: a research in progress,” in International Conference
on Services Computing, 2016.

[22] G. Gerstweiler, K. Platzer, and H. Kaufmann, “Dargs: Dynamic ar
guiding system for indoor environments,” Computers, vol. 7, no. 1,
p. 5, 2018.

[23] Y. Zu and R. Dai, “Distributed path planning for building evacuation
guidance,” Cyber-Physical Systems, vol. 3, no. 1-4, pp. 1–21, 2017.

[24] S.-K. Wong, Y.-S. Wang, P.-K. Tang, and T.-Y. Tsai, “Optimized
evacuation route based on crowd simulation,” Computational Visual
Media, vol. 3, no. 3, pp. 243–261, 2017.

[25] H. Liu, B. Xu, D. Lu, and G. Zhang, “A path planning approach for
crowd evacuation in buildings based on improved artificial bee colony
algorithm,” Applied Soft Computing, vol. 68, pp. 360–376, 2018.

[26] P. Velagapudi, K. Sycara, and P. Scerri, “Decentralized prioritized
planning in large multirobot teams,” in International Conference on
Intelligent Robots and Systems (IROS), 2010.

[27] S. Liu, D. Sun, and C. Zhu, “A dynamic priority based path planning
for cooperation of multiple mobile robots in formation forming,”
Robotics and Computer-Integrated Manufacturing, vol. 30, no. 6,
pp. 589–596, 2014.

[28] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence,
vol. 219, pp. 40–66, 2015.

[29] H. Ma, T. Kumar, and S. Koenig, “Multi-agent path finding with delay
probabilities,” in Proceedings of the Thirty-First AAAI Conference on
Artificial Intelligence, pp. 3605–3612, AAAI Press, 2017.

[30] M. F. Zaeh and W. Vogl, “Interactive laser-projection for programming
industrial robots,” in IEEE/ACM International Symposium on Mixed
and Augmented Reality, 2006.

[31] M. Zolotas, J. Elsdon, and Y. Demiris, “Head-mounted augmented
reality for explainable robotic wheelchair assistance,” in International
Conference on Intelligent Robots and Systems (IROS), 2018.

[32] H. Liu, Y. Zhang, W. Si, X. Xie, Y. Zhu, and S.-C. Zhu, “Interactive
robot knowledge patching using augmented reality,” in International
Conference on Robotics and Automation (ICRA), 2018.

[33] U. Rehman and S. Cao, “Augmented reality-based indoor navigation
using google glass as a wearable head-mounted display,” in Interna-
tional Conference on Systems, Man, and Cybernetics, 2015.

[34] J. Sánchez, Á. Carrera, C. Iglesias, and E. Serrano, “A participatory
agent-based simulation for indoor evacuation supported by google
glass,” Sensors, vol. 16, no. 9, p. 1360, 2016.

[35] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” Transactions on
Robotics (T-RO), vol. 33, no. 5, pp. 1255–1262, 2017.

[36] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in International Conference on Computer
Vision (ICCV), 2011.

[37] D. Gálvez-López and J. D. Tardos, “Bags of binary words for fast
place recognition in image sequences,” Transactions on Robotics (T-
RO), vol. 28, no. 5, pp. 1188–1197, 2012.

[38] H. Strasdat, A. J. Davison, J. M. Montiel, and K. Konolige, “Double
window optimisation for constant time visual slam,” in International
Conference on Computer Vision (ICCV), 2011.

[39] R. Blickhan, “The spring-mass model for running and hopping,”
Journal of biomechanics, vol. 22, no. 11-12, pp. 1217–1227, 1989.

[40] H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leg behaviour
explains basic dynamics of walking and running,” Proceedings of the
Royal Society B: Biological Sciences, vol. 273, no. 1603, pp. 2861–
2867, 2006.

2804

