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Abstract— In this paper, we rethink the problem of scene
reconstruction from an embodied agent’s perspective: While
the classic view focuses on the reconstruction accuracy, our
new perspective emphasizes the underlying functions and con-
straints such that the reconstructed scenes provide actionable
information for simulating interactions with agents. Here,
we address this challenging problem by reconstructing an
interactive scene using RGB-D data stream, which captures
(i) the semantics and geometry of objects and layouts by
a 3D volumetric panoptic mapping module, and (ii) object
affordance and contextual relations by reasoning over physical
common sense among objects, organized by a graph-based scene
representation. Crucially, this reconstructed scene replaces the
object meshes in the dense panoptic map with part-based
articulated CAD models for finer-grained robot interactions. In
the experiments, we demonstrate that (i) our panoptic mapping
module outperforms previous state-of-the-art methods, (ii) a
high-performant physical reasoning procedure that matches,
aligns, and replaces objects’ meshes with best-fitted CAD mod-
els, and (iii) reconstructed scenes are physically plausible and
naturally afford actionable interactions; without any manual
labeling, they are seamlessly imported to ROS-based simulators
and virtual environments for complex robot task executions.1

I. INTRODUCTION

Perception of the human-made scenes and the objects
within inevitably leads to the course of actions [1, 2]; such
a task-oriented view [3, 4] is the basis for a robot to interact
with the environment and accomplish complex tasks. In
stark contrast, such a crucial perspective is largely missing
in the robot mapping and scene reconstruction literature:
Prevailing semantic mapping or Simultaneous Localization
and Mapping (SLAM) methods often produce a metric map
of the scene with semantic or instance annotations; they only
emphasize mapping accuracy but omit the essence of robot
task execution—actions that a semantic entity could afford
and associated physical constraints embedded among entities.

Such a lack of the scene’s functional representation leads
to a gap between the reconstructed semantic scenes and
Task and Motion Planning (TAMP), which prevents a robot
from directly interacting with the reconstructed scenes to
accomplish complex tasks. Take the reconstructed scene in
Fig. 1 as the example, wherein the robot is tasked to pick up
a frozen meal from the fridge, microwave and serve it. To
properly plan and execute inside the reconstructed scene, a
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Fig. 1: The reconstruction of an interactive 3D scene. (a)
A contact graph is constructed by the supporting relations that
emerged from (b) panoptic mapping. By reasoning their affordance,
functional objects within the scene are matched and aligned with
part-based interactive CAD models. (c) The reconstructed scene
enables a robot simulates its task execution with comparable
outcomes in the physical world.

robot ought to acquire (i) semantics and geometry of objects
(e.g., this piece of point cloud is a fridge), (ii) actions an
object affords (e.g., a fridge can be open), and (iii) constraints
among these entities (e.g., no objects should float in the air).
Although modern semantic mapping and SLAM methods can
partially address (i) [5, 6], existing solutions for (ii) [4, 7, 8]
and (iii) [9–14] have not yet been fully integrated into a robot
scene reconstruction framework, resulting in non-interactive
reconstructed scenes. This deficiency precludes the feasibility
of directly applying TAMP on the reconstructed scenes either
using traditional [15, 16] or learning-based [17, 18] methods;
the robot can hardly verify whether its plan is valid or
the potential outcomes of its actions are satisfied before
executing in the physical world.

Although researchers have attempted to devise manual
pipelines (e.g., iGibson [19], SAPIEN [20]) to either convert
the reconstructed real-world scenes or directly build virtual
environments from scratch, creating such simulation environ-
ments is a non-trivial and time-consuming task. The simu-
lated environment should be sufficiently similar to the reality,
and the objects to be interacted with should afford sufficiently
similar functionality. Only by satisfying the above conditions
could the outcomes of interactions in simulation be similar to
those in the physical world. Due to the enormous workload to
create/convert each scene, the number of available scenes to
date is still quite limited. A challenge naturally arises: Can
we reconstruct a scene that can be automatically imported
into various simulators for interactions and task executions?

In this paper, we propose a new task of reconstructing
functionally equivalent and interactive scenes, capable of
being directly imported into simulators for robot training

https://github.com/hmz-15/Interactive-Scene-Reconstruction
https://github.com/hmz-15/Interactive-Scene-Reconstruction


and testing of complex task execution. We argue that a
scene’s functionality is composed of the functions afforded
by objects within the scene. Therefore, the essence of our
scene reconstruction lies in defining functionally equivalent
objects, which should preserve four characteristics with
decreasing importance: (i) its semantic class and spatial
relations with nearby objects, (ii) its affordance, e.g., what
interactions it offers, (iii) a similar geometry in terms of size
and shape, and (iv) a similar appearance.

Existing approaches oftentimes represent reconstructed
semantic scene and its entities as sparse landmarks [21, 22],
surfels [5, 23], or volumetric voxels [24, 25]. However, these
representations are inadequate to serve as a functional repre-
sentation of the scene and its entities: They merely provide
occupancy information (i.e., where the fridge is) without
any actionable information for robot interactions or planning
(e.g., whether or how the fridge can be open).

To address the above issues, we devise three primary
components in our system; see an illustration in Fig. 2:

(A) A robust 3D volumetric panoptic mapping module,
detailed in Section III, accurately segments and reconstructs
3D objects and layouts in clustered scenes even with noisy
per-frame image segmentation results. The term “panoptic,”
introduced in [26], refers to jointly segmenting stuff and
things. In this paper, we regard objects as things and layout
as stuff. Our system produces a volumetric panoptic map
using a novel per-frame panoptic fusion and a customized
data fusion procedure; see examples in Fig. 1b and Fig. 2a.

(B) A physical common sense reasoning module, de-
tailed in Section IV, replaces object meshes obtained from
the panoptic map with interactive rigid or articulated CAD
models. This step is achieved by a ranking-based CAD
matching and an optimization-based CAD alignment, which
accounts for both geometric and physical constraints. We
further introduce a global physical violation check to ensure
that every CAD replacement is physically plausible.

(C) A graphical representation, contact graph cg,
(Fig. 1a, Fig. 2c, and Section II) is built and maintained
simultaneously, in which the nodes of a cg represent objects
and layouts, and the edges of a cg denote the support and
proximal relations. We further develop an interface to convert
a cg to a Unified Robot Description Format (URDF) such that
the reconstructed functionally equivalent scene (see Fig. 1C)
can be directly imported into simulators for robot interactions
and task executions; see Section V for experimental results.

Related Work: Existing approaches to generate sim-
ulated interactive environments fall into three categories:
(i) manual efforts, such as those in Gazebo [27] and V-
REP [28] for robotics, AI2THOR [29] and Gibson [30] for
embodied AI, and iGibson [19], SAPIEN [20], and VR-
Gym [31] with part-based articulated objects (e.g., a cabinet
with a door); (ii) scene synthesis that produces a massive
amounts scenes with the help of CAD databases [32–34]; (iii)
large-scale scene dataset with aligned CAD models, such
as SUNCG [35] and 3D-FRONT [36]. However, without
tedious manual work, all of these prior approaches fail to
replicate a real scene in simulation with diverse interactions.

Modern semantic mapping [6, 24, 37] and object
SLAM [22, 25] methods can effectively reconstruct an indoor
scene at an object-level. Physical cues, such as support
and collision, has been further integrated to estimate and
refine the object pose [38–40]. In parallel, computer vision
algorithms predict 3D instance segmentation in densely
reconstructed scenes [41, 42], and then fit CAD models by
crowdsourcing [43] or by computing the correspondences
between the reconstructed scenes and CAD models [44, 45].
However, the above work fails to go beyond semantics to
(i) capture the interactive nature of the objects, or (ii) mean-
ingfully represent a physically plausible scene. As such, the
reconstructed scenes still fail to be imported into simulators
to afford robot interactions and task executions.

Constructing a proper scene or a map representation
remains an open problem [46]. Typical semantic mapping
and SLAM methods only output a flat representation, dif-
ficult to store or process high-level semantics for robot
interactions and task executions. Meanwhile, graph-based
representations, e.g., scene grammar [11, 13, 14, 34, 47, 48]
and 3D scene graph [49–51], provide structural and con-
textual information. In particular, Rosinol et al. [51] also
incorporate actionable information for robot navigation tasks.
Our work devises a contact graph with supporting and
proximal relations, which imposes kinematic constraints for
more complex robot manipulation.

II. CONTACT-BASED SCENE REPRESENTATION

We devise a graph-based representation, contact graph
cg, to represent a 3D indoor scene. Formally, a contact
graph cg“ppt, Eq contains (i) a parse tree (pt) that captures
the hierarchical relations among the scene entities [47], and
(ii) the proximal relations E among entities represented by
undirected edges; see an example of pt in Fig. 1a.

A. Representation
Scene Parse Tree pt“pV, Sq has been used to represent

the hierarchical decompositional relations (i.e., the edge set
S) among entities (i.e., the node set V ) in various task
domains, including 2D images and 3D scenes [11, 13, 14,
33, 34, 48, 52], videos and activities [4, 8, 53], robot manip-
ulations [54–58], and theory of mind [59]. In this paper,
we adopt pt to represent supporting relations among entities,
dynamically built and maintained during the reconstruction;
for instance in Fig. 1a, the cabinet is the parent node of the
microwave. Supporting relation is quintessential in scene
understanding with physical common sense as it reflects the
omnipresent physical plausibility; i.e., if the cabinet were
moved, the microwave would move together with it or fall
onto the ground. This counterfactual perspective goes beyond
occupancy information (i.e., the physical location of an
object); in effect, it further provides actionable information
and the potential outcome of actions for robot interactions
and task executions in the scene.

Scene Entity Nodes V “tvsuYV LYV RYV A include:
(i) the scene node vs, severing as the root of pt, (ii) layout
node set V L, including floor, ceiling, and the wall that bound
the 3D scene, (iii) rigid object set V R, wherein each object
has no articulated part (e.g., a table), and (iv) articulated
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Fig. 2: System architecture for reconstructing a functionally equivalent scene. (A) Per-frame segmentation and cross-frame data fusion
produce (a) a 3D volumetric panoptic map with fine-grained semantics and geometry, served as the input for (B) physical common sense
reasoning that matches, aligns, and replaces segmented object meshes with functionally equivalent CAD alternatives. Specifically, (b)
by geometric similarity, a ranking-based matching algorithm selects a shortlist of CAD candidates, followed by an optimization-based
process that finds a proper transformation and scaling between the CAD candidates and object mesh. A global physical violation check is
further applied to finalize CAD replacements to ensure physical plausibility. (C) This CAD augmented scene can be seamlessly imported
to existing simulators; (c) contact graph encodes the kinematic relations among the objects in the scene as the planning space for a robot.

object set V A, wherein each object has articulated parts to be
interacted for various robot tasks (e.g., fridge, microwave).
Each non-root node vi “ xoi, ci,Mi, Bippi, qi, siq,Πiy en-
codes a unique instance label oi, a semantic label ci, a full
geometry model Mi (a triangular mesh or a CAD model),
a 3D bounding box Bi (parameterized by its position pi,
orientation qi, and size si, all in R3), and a set of surface
planes Πi “ tπk

i , k “ 1 ¨ ¨ ¨ |Πi|u, where πk
i is a homogeneous

vector rnk
i
T
, dki sT PR4 in the projective space [60] with unit

plane normal vector nk
i , and any point v PR3 on the plane

satisfies a constraint: nk
i
T ¨v`dki “ 0.

Supporting Relations S is the set of directed edges in pt
from parent nodes to their child nodes. Each edge sp,c PS
imposes physical common sense between the parent node vp
and the child node vc. These constraints are necessary to
ensure that vp supports vc in a physically plausible fashion:
(i) Geometrical plausibility: vp should have a plane πs

p “
rns

p
T , dspsT with ns

p being opposite to the gravity direction,
whereas bottom surface of vc should contact the top of πs

p:

Dπs
p PΠp,n

s
p
T ¨g ď ath, s.t. Dpvc,πs

pq “ pgc ´p´dsp `sgc{2q “ 0, (1)

where g is the unit vector along the gravity direction, ath “
´0.9 is a tolerance coefficient, dsp is the offset of the vp’s
supporting plane, and pgc and sgc denote the position and size
of the vc’s 3D bounding box along the gravity direction.
(ii) Sufficient contact area for stable support: Formally,

Apvp, vcq “ Apvp Xvcq{Apvcq ě bth, (2)

where Apvcq is the bottom surface of the vc’s 3D bounding
box, and Apvp Xvcq is the area of the overlapping rectangle
containing the mesh vertices of vp near πs

p within vc’s 3D
bounding box. We set threshold bth “ 0.5 for a stable support.

Proximal Relations E introduce links among entities
in the pt. They impose additional constraints by modeling
spatial relations between two non-supporting but physically

nearby objects v1 and v2: Their meshes should not penetrate
with each other, i.e., VolpM1 XM2q “ 0. Note that the con-
straint only exists between two objects with overlapping 3D
bounding boxes, i.e., when VolpB1 XB2q ą 0.

B. Constructing Contact Graph
Each node vx in cg is constructed from a scene entity x

in the panoptic map (see Section III) by: (i) acquiring its
ox, cx,Mx, Bxppx, qx, sxq, (ii) extracting surface planes Πx

by iteratively applying RANSAC [61] and removing plane
inliers, and (iii) assigning x as vx in cg.

Given a set of nodes constructed on-the-fly, we apply a
bottom-up process to build up cg by detecting supporting
relations among the entities. Specifically, given an entity vc,
we consider all entities tviu whose 3D bounding boxes are
spatially below it and have proper supporting planes πk

i

based on Eq. (1). The most likely supporting relation is
chosen by maximizing the following score function:

Spvc, vi,πk
i q “

�

1´min
“

1, }Dpvc,πk
i q}

‰(

ˆApvi, vcq, (3)

where the first term indicates the alignment between the vc’s
bottom surface and the vi’s supporting planes, and the second
term reflects an effective supporting area, both normalized to
r0, 1s. Bi is further refined (see Eq. (1)) as it was computed
based on incomplete object meshes. Meanwhile, the proximal
relations are assembled by objects’ pairwise comparison.
At length, the cg of the scene is constructed based on the
identified entities and their relations and grows on-the-fly.

III. ROBUST PANOPTIC MAPPING

Robust and accurate mapping of scene entities within
clustered environments is essential for constructing a cg and
serving downstream tasks. Below, we describe our robust
panoptic mapping module to generate volumetric object and
layout segments in the form of meshes from RGB-D streams;
see the pipeline in Fig. 2A. We follow the framework



proposed in [24] and only highlight crucial technical
modifications below. The experiments demonstrate that our
modifications significantly improve system performance.

Per-frame Segmentation: We combine the segmenta-
tion of both RGB and depth for performance improvement
as in [24]. However, instead of merely labeling the depth
segments with semantic-instance masks, we bilaterally fuse
panoptic masks and geometric segments to output point cloud
segments with both semantic and instance labels. We further
perform an outlier removal for each object entity; far away
segments are removed and assigned to the scene background.

This modification significantly improves the noisy per-
frame segmentation; see Fig. 2a. In this example, fusing
RGB and depth segments mutually improves the segments if
they were obtained by each alone. The fusion (i) correctly
segments the keyboard and divides the two monitors when
depth segments fail, and (ii) geometrically refines the noisy
panoptic mask of the chair to exclude the far-away ground.

Data Fusion: Compared to [24], we introduce two
notable enhancements in data fusion. First, we use a triplet
count Φpl, c, oq to record the frequency that an instance label
o, a semantic label c, and a geometric label l associated
with the same point cloud segment; it is incrementally up-
dated: Φpl, c, oq“Φpl, c, oq`1. This modification improves
consistency in semantic-instance fusion. Second, in addition
to merging two geometric labels if they share voxels over
a certain ratio, we also regulate two instance labels if the
duration of association with a common geometric label
exceeds a threshold. We further estimate a gravity-aligned,
3D-oriented bounding box for each object mesh [62]. In sum,
our system simultaneously and comprehensively outputs a set
of scene entities with their instance labels, semantic labels,
3D bounding boxes, and reconstructed meshes.

Implementation and Evaluation: We use an off-the-
shelf panoptic segmentation model [63] pre-trained on the
COCO panoptic class [64] for RGB images and a geometric
segmentation method [65] for depth images. We compare our
panoptic mapping module with the original Voxblox++ [24]
on 8 sequences in the SceneNN dataset [66]. Our evaluation
includes four criteria: (i) panoptic quality (PQ) [6, 26], (ii)
segmentation quality (SQ), (iii) recognition quality (RQ) of
3D panoptic mapping on 8 thing classes and 2 stuff classes,
and (iv) the mean average precision (mAP) computed using
an intersection of union (IoU) with a threshold of 0.5 for
3D oriented bounding box estimation on thing classes. Since
the supporting relations in cg could further refine the 3D
bounding boxes (see Section II-B), we also include mAPre.

Table I tabulates the class-averaged results, showing that
our method consistently outperforms the baseline in both
3D panoptic mapping and 3D bounding box estimation;
see Fig. 5b for some qualitative results. In general, refin-
ing objects’ 3D bounding boxes with supporting relations
introduces significant improvement in accuracy.

IV. PHYSICAL REASONING FOR CAD ALIGNMENTS

Due to occlusion or limited camera view, the reconstructed
meshes of the scene are oftentimes incomplete. As such, the
segmented object meshes are incomplete and non-interactive
before recovering them as full 3D models; see examples in

TABLE I: Quantitative results of 3D panoptic mapping and
3D oriented bounding box estimation on 8 sequences in the
SceneNN dataset [66].

Ours Voxblox++ [24]
Sequence ID PQ SQ RQ mAP mAPre PQ SQ RQ mAP

061 43.0 52.0 46.3 33.6 33.6 25.7 53.1 32.2 8.9
086 27.3 39.6 34.6 33.8 33.8 19.4 32.9 25.2 7.9
096 12.5 21.4 14.6 14.6 14.6 7.3 11.0 8.3 14.6
223 49.5 60.2 63.3 24.2 55.6 21.7 40.2 26.7 61.4
225 35.4 46.9 44.8 31.5 31.5 21.6 43.6 29.4 11.2
231 37.8 45.9 45.4 29.2 31.3 17.9 30.4 22.1 19.4
249 24.4 33.8 34.4 48.9 71.9 23.4 36.4 30.6 48.5
322 68.4 71.1 80.0 58.3 83.3 43.6 64.6 52.9 25.0

Fig. 3a and Fig. 4a. We introduce a multi-stage framework
to replace a segmented object mesh with a functionally
equivalent CAD model. This framework consists of an
object-level, coarse-grained CAD matching and fine-grained
CAD alignment, followed by a scene-level, global physical
violation check; see an illustration in Fig. 2B.

A. CAD Pre-processing

We collected a CAD database consisting of both rigid and
articulated CAD models, organized by semantic classes. The
rigid CAD models are obtained from ShapeNetSem [67],
whereas articulated parts are first assembled and then prop-
erly transformed into one model. Each CAD is transformed
to have its origin and axes aligned with its canonical pose.
Fig. 2B shows some instances of CAD models in the
database. Similar to a segmented object entity, a CAD model
y is parameterized by oy, cy,My, Byppy, qy, syq, and Πy .

B. Ranking-based CAD Matching

Take the chair in Fig. 2b as an example: Given a segmented
object entity x, the algorithm retrieves all CAD models
in the same semantic category (i.e., chair) from the CAD
database to best fit x’s geometric information. Since the
exact orientation of x is unknown, we uniformly discretize
the orientation space into 24 potential orientations. For
each rotated CAD model y that aligned to one of the 24
orientations, the algorithm computes a matching distance:

Dpx, yq“ω1 ¨dspx, yq`ω2 ¨dπpx, yq`ω3 ¨dbpyq, (4)

where ω1“ω2“ 1.0 and ω3“ 0.2 are the weights of three
terms, set empirically. We detail these terms below.

(i) ds matches the relative sizes of 3D bounding boxes:

dspx, yq“

∥∥∥∥ sx
}sx}2

´
sy
}sy}2

∥∥∥∥ . (5)

(ii) dπ penalizes the misalignment between their surface
planes in terms plane normal and relative distance:

dπpx, yq“min
fΠ

ÿ

πiPΠx

«
∥∥∥∥∥dpTxTπiq}sx}2

´
dpfΠpπiqq

}sy}2

∥∥∥∥∥
`1´npπiq

T ¨npfΠpπiqq
‰

,

(6)

where Tx denotes the homogeneous transformation matrix
from the map frame on the ground to the frame of the
bounding box Bx, dp¨q and np¨q denote the offset and normal
vector of a plane, and fΠ : ΠxÑΠy is a bijection function
denoting the assignment of feature planes between x and y.
Note that fΠ is also constrained to preserve supporting planes
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Fig. 3: Examples of matching and aligning CAD candidates to (a)
an input object mesh. (b) All CAD models within the same semantic
class as the input object are retrieved for matching. Matching Error
(ME) reflects both the similarity in shapes and the proximity in
orientations. After selecting the CAD candidates with smallest MEs,
(c) a fine-grained CAD alignment process selects the best CAD
model with a proper transformation based on Alignment Error (AE).

as defined in Eq. (1). As computing dπ involves solving
an optimal assignment problem, we adopt a variant of the
Hungarian algorithm [68] to identify the best fΠ.

(iii) dbpyq is a bias term that adjusts the overall matching
error for less preferable CAD candidates:

dbpyq “ 1`gT ¨zpyq, (7)

where zpyq denotes the up-direction of the CAD model in
the oriented CAD frame, and g is a unit vector along the
gravity direction. In general, we prefer CAD candidates that
stand upright to those leaning aside or upside down.

Fig. 3b illustrates the matching process. Empirically, we
observe that the discarded CAD candidates of “chair” and
“table” due to large Matching Error (ME) are indeed more
visually distinct from the input object meshes. Moreover, the
“fridge” model with a wrong orientation has a much larger
ME and is thus discarded. These results demonstrate that
our ranking-based matching process can select visually more
similar CAD models with the correct orientation. Our system
maintains the top 10 orientated CAD candidates with the
lowest ME for the fine-grained alignment in the next stage.

C. Optimization-based CAD Alignment

Given a shortlist of CAD candidates, the overarching goal
of this step to find an accurate transformation (instead of 24
discretized orientations) that aligns a given CAD candidate
y to the original object entity x, achieved by estimating a
homogeneous transformation matrix between x and y:

T “
„

αR p
0T 1



, s.t. min
T

J px, T ˝yq, (8)

where ˝ denotes the transformation of a CAD candidate
y, J is an alignment error function, α is a scaling factor,
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Fig. 4: Given (a) incomplete object meshes, our physical common
sense reasoning for CAD replacement (b) generates a functionally
equivalent and physically plausible configuration. Specifically, the
CAD matching and alignment algorithms select and rank a shortlist
of CAD candidates. A global physical violation check prunes
invalid configurations such as (c) collision and (d) unstable support.

R“Rotpz, θq is a rotation matrix that only considers the
yaw angle under the gravity-aligned assumption, and p is a
translation. This translation is subject to the following con-
straint: pg “ ´ds `α ¨sgy{2, as the aligned CAD candidate is
supported by a supporting plane π “ rns

¨
T , ds¨ s.

The objective function J can be written in a least squares
form and minimized by the Levenberg–Marquardt [69]
method:

J “ eTb Σbeb `eTp Σpep, (9)

where eb is the 3D bounding box error, ep the plane
alignment error, and Σb,Σp the error covariance matrices
of the error terms. Specifically: (i) eb aligns the height of
the two 3D bounding boxes while constraining the ground-
aligned rectangle of the transformed By inside that of Bx:

eb “ rApT ˝yqq´Apx, T ˝yq, α ¨sg
y ´sg

xsT , (10)

and (ii) ep aligns all the matched feature planes as:

ep “ r∆π1, ...,∆π|Πx|sT ,

∆πi “ r´dpπiq `dpT´T ¨fΠpπiqq, 1´npπiqT ¨npT´T ¨fΠpπiqqs.
(11)

We evaluate each aligned CAD candidate by computing
an Alignment Error (AE), the root mean square distance
between the object mesh vertices and the closest points on
aligned CAD candidate; Fig. 3c shows both qualitative and
quantitative results. The CAD candidate with the smallest AE
will be selected, whereas others are potential substitutions if
the selected CADs violate physical constraints, detailed next.

D. Global Physical Violation Check

Given a shortlist of matched and aligned CAD candidates,
we validate supporting relations and proximal relations; see
Fig. 4 for qualitative results. Specifically, for an object node
vp and its object entity x, we discard a CAD candidate
y if it fails to satisfy Eq. (2) with any supporting child
vc of vp. We also check the proximal constraint by first
discarding CAD candidates that collide with the layout
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Fig. 5: (a–b) Qualitative comparisons between the ground-truth segmentation [66] and segmentation results produced by the proposed
panoptic mapping. (c) The reconstructed functionally equivalent scenes capture most of the objects and replaces them by actionable CAD
models. (d–e) Both robots and human users can virtually enter the reconstructed scene for TAMP and VR applications, respectively.

entities, and then jointly selecting CAD candidates for each
object entity to guarantee the object-object non-collision. The
joint selection problem can be formulated as a constraint
satisfaction problem. Starting with a CAD candidate with the
minimum alignment error for each object entity, we adopt the
min-conflict algorithm [70] to obtain a global solution.

V. EXPERIMENTS AND RESULTS

We perform scene reconstruction experiments using RGB-
D sequences in the SceneNN dataset [66] and import the
results into various simulators for interaction; see Fig. 5.
Compared to the ground-truth segmentation, our panoptic
mapping system accurately recognizes and segments scene
entities (Fig. 5b). Such an accurate mapping provides the
basis for high-level physical reasoning to replace incom-
plete meshes with CAD models, resulting in a high-quality,
functionally equivalent, interactive scene reconstruction, as
shown in Fig. 5c. Note that our system’s performance could
be further improved as we only utilize pre-trained models
in the mapping procedure without fine-tuning. The run-time
for converting a 3D panoptic map into an interactive scene
varies from 30 seconds to several minutes, depending on the
number and categories of functional objects involved.

The reconstructed scene cg can be readily converted into
a URDF and be imported into robot simulators. While it
is straightforward to immigrate scene entities in cg to links
and joints in the kinematic tree, supporting edges are altered
to fixed/floating joints based on the semantics of the scene
entity pairs (e.g., a cup is connected to a table using a
floating joint as it can be freely manipulated). Fig. 5c shows
the reconstructed scenes in the ROS environment, which

subsequently connects the reconstructed scenes and robot
TAMP; see Fig. 5d. Fig. 5e demonstrates that the recon-
structed scenes can be loaded into the VR environment [31]
for interactions with both virtual agents and human users,
which opens a new avenue for future studies.

VI. CONCLUSIONS

We proposed a new task of reconstructing interactive
scenes that captures the semantic and associated actionable
information of objects in a scene, instead of purely focusing
on geometric reconstruction accuracy. We solved this new
task by combining (i) a novel robust panoptic mapping that
segments individuals objects and layouts, and (ii) a physical
reasoning process to replace incomplete objects meshes with
part-based CAD models, resulting in physically plausible and
interactive scenes. We validated the capability of our system
with both qualitative and quantitative results. Finally, we
showed that various simulators (e.g., ROS, VR environments)
can seamlessly import the reconstructed scene to facilitate
researches in robot TAMP and embodied AI.

This work also motivates three new research questions
worth investigating in the future: (i) To sufficiently plan
robot tasks, how well should the CAD models replicate the
real objects? (ii) Although the proposed system can filter
out dynamic entities based on their semantic segmentation
(e.g., humans) and a better data association can handle semi-
dynamic objects, how could we incorporate the causal rela-
tions between environmental changes and human activities?
(iii) Although the effects of acting in a sequential task could
be updated as the kinematic information in cg, recognizing
these effects in physical world introduces extra challenges.
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