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Abstract— We construct a Virtual Kinematic Chain (VKC)
that readily consolidates the kinematics of the mobile base, the
arm, and the object to be manipulated in mobile manipulations.
Accordingly, a mobile manipulation task is represented by
altering the state of the constructed VKC, which can be
converted to a motion planning problem, formulated and
solved by trajectory optimization. This new VKC perspective
of mobile manipulation allows a service robot to (i) produce
well-coordinated motions, suitable for complex household en-
vironments, and (ii) perform intricate multi-step tasks while
interacting with multiple objects without an explicit definition of
intermediate goals. In simulated experiments, we validate these
advantages by comparing the VKC-based approach with base-
lines that solely optimize individual components. The results
manifest that VKC-based joint modeling and planning promote
task success rates and produce more efficient trajectories.

I. INTRODUCTION

Mobile manipulation is a core capability for a service
robot to function properly in household environments and
excel in various tasks. However, since service robots usually
come with a bulky mobile base along with a large base
footprint, they often struggle in household environments
due to three unique challenges: (i) An indoor space is
confined and clustered, constraining the robot’s locomotion
and posing additional challenges for mobile manipulation.
(i) The majority of tasks involve manipulating objects with
diverse structures (e.g., articulated objects like doors and
drawers), challenging to generate motion plans for mobile
manipulators with a unified approach. (iii) The base and
arm’s movements have to be coordinated to ensure efficient
and safe operations during mobile manipulation.

There exists research efforts focusing on each of the above
challenges, i.e., motion planning in confined space [1-3],
control or learning frameworks for opening doors and draw-
ers [4-7], and whole-body planning for foot-arm coordina-
tion [8—10]. However, a unified approach that tackles all three
challenges altogether in household settings is still mostly
missing. Consequently, a service robot’s mobile manipulation
skills are far from ideal in terms of efficacy or fluency.

In stark contrast, humans possess fluid manipulation skills
and interact with an environment efficiently. Cognitive psy-
chologies and philosophers have proposed a theory of body
schema [11]: Humans maintain a body’s representation dur-
ing their motions and interactions with the environment;

* Ziyuan Jiao and Zeyu Zhang contributed equally to this work.

1 UCLA Center for Vision, Cognition, Learning, and Autonomy
(VCLA) at Statistics Department. Emails: {zyjiao, zeyuzhang,
yixin.zhu, hx.liu}@ucla.edu, sczhu@stat.ucla.edu.

2 Drexel University, Department of Electrical and Computer Engineering.
Email: dkh42@drexel.edu.

3 UCLA ECE Department. Email: jiangxjamesQucla.edu.

The work reported herein was supported by ONR NO00014-19-1-2153,
ONR MURI N00014-16-1-2007, and DARPA XAI N66001-17-2-4029.

David Han?

Song-Chun Zhu!  Yixin Zhu!

Hangxin Liu'

Fig. 1: Diverse interactions a service robot needs to perform in
a household environment. By abstracting the objects’ kinematic
structures and forming a VKC, a service robot can plan and act
more efficiently with improved foot-arm coordination.

this representation is malleable and can be extended to
incorporate external objects. By treating the manipulated
object as part of the extended limb, the theory of body
schema provides a plausible account for why humans excel
in complex manipulation tasks, from picking and placing
an object, to opening doors and drawers, to tool=use [12].
Although the idea of the body schema has been introduced
to the robotics community to represent robot structures and
guide robot’s behaviors [13], it has left untouched whether
the theory of body schema would promote a service robot’s
(mobile manipulation in particular) planning and execution
skills in complex manipulation tasks. And if it does, what
would be a proper representation at a computational level?
To answer this question, we propose to abstract the object
being manipulated—rigid objects and constrained mecha-
nisms (doors, drawers, etc.)—by its kinematic structure. We
integrate the kinematics of the robot and the manipulated
object by constructing a single kinematic chain using the
idea of Virtual Kinematic Chain (VKC) [14]. Specifically, the
kinematic structure of the manipulated object is augmented
to the manipulator by connecting the end-effector to an
attachable location of the object. A virtual transformation
between the mobile base and the virtual base link is also
augmented by incorporating its navigation information.
From this new VKC-based perspective, a mobile manip-
ulation task in a household environment is represented by
altering the state or the structure of the VKC, which leads to
a motion planning problem on VKC, formulated and solved
by trajectory optimization. This new perspective enables a
service robot to plan and act efficiently by allowing it to



directly incorporate external objects and plan the motion
as a whole to achieve better foot-arm coordination; see
examples in Fig. [T} In simulations, we validate the proposed
VKC perspective in various mobile manipulation tasks. Our
experiments show that the consolidated kinematic models are
particularly suitable for service robots by alleviating inter-
mediate goal definitions for motion planners; they promote
coordinated motions among base, arm, and object.

A. Related Work

The idea of Virtual Kinematic Chain (VKC) could be
traced back to 1997 by Pratt ef al. [15] for bipedal robot
locomotion [16]. This idea was later adopted to chain serial
manipulators to form one kinematic chain [14] and to dual-
arm manipulation tasks; for instance, connecting parallel
structures via rigid-body objects [17], modeling whole-body
control of mobile manipulators [18]. Recently, VKC is also
adopted for wheeled-legged robot control [19]. In this paper,
we further push the idea of VKC to a mobile manipulator
and demonstrate its advantages in modeling and planning
complex manipulation tasks in household environments.

Motion planning is among the largest and most fun-
damental fields in robotics. In essence, methods can be
roughly categorized into three major doctrines: search-based
(e.g., A* [20], D* [21]), sampling-based (e.g., RRT [22]
and its variants [23,24]), and trajectory optimization (e.g.,
CHOMP [25], TrajOpt [26]). We formulate the motion plan-
ning problem on VKC following the conventions in TrajOpt,
as it incorporates kinematic constraints better than sampling-
based methods while avoiding searching in large spaces.

Efficiently performing mobile manipulation tasks are
challenging. Notable efforts have recently been dedicated to
algorithms or system implementations, focusing on interac-
tive manipulation tasks. For instance, equilibrium point con-
trol [4] and impedance control structure [27] are introduced
to open doors and drawers. To improve efficiency, Gochev
et al. used a heuristic-based method to reduce the search
space [28]. Taking advantage of solving the inverse kinemat-
ics, Burget et al. proposed a whole-body motion planning ap-
proach for humanoid’s constrained motion [29], and Bodily
et al. proposed an algorithm for jointly optimizing a robot’s
base position and joint motions [9]. More recently, Toussaint
et al. proposed a multi-bounded tree search algorithm to
solve multi-step manipulation tasks involving tool-use [30].
Despite their promising results, prior arts primarily focus
on a specific problem setup (e.g., opening door and drawer,
using tools). In comparison, the proposed approach rethinks
mobile manipulation from a more general viewpoint using
VKCs and tackles a broader range of tasks.

B. Overview

The remainder of this paper is organized as follows. Sec-
tion [[] outlines notations and formally presents the problem
definition. Section |lII| details the VKC modeling. In a series
of mobile manipulation tasks, we demonstrate the efficacy of
VKCs with a high success rate in Section [V} We conclude
the paper with discussions in Section [V]
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Fig. 2: Overview of the mobile manipulation planning schemat-
ics using the proposed VKC-based approach. (a) After abstract-
ing out the underlying kinematics of the manipulated object and
the mobile manipulator, (b) a VKC is constructed. The yellow
boxes denote where the virtual connections are established: (i) One
between F; and Fi, the virtual base frame in the world coordinate
and the robot’s actual base frame, to reflect the navigational
information, and (ii) another between FZ and FS,, the robot’s end-
effector frame and the attachable frame of the object, to transfer
effects of the manipulator to the manipulated object.

II. NOTATIONS AND PROBLEM DEFINITION

This section introduces the notations throughout the paper
and the problem setup describing a mobile manipulation task.
The physical properties and kinematics of links and joints
are defined following the Unified Robot Description Format
(URDF) in Robot Operating System (ROS) and organized in
a tree representation 7. Table[[] lists all the related notations:

TABLE I: Notations used for constructing VKCs.
Description

Group Notation

TT A tree represents the robot kinematic model
F{£  Robot base link’s frame; the root of C%
Robot end-effector link’s frame

Ct =TT, akinematic chain from F¥ to F£
FF  Frame of link ¢ in the kinematic chain C¥
TO A tree represents the object kinematic model
]_—bo Object base link’s frame; the root of TO

Robot
R
o

3
% FO9  Object attachable link’s frame
o C? <79, akinematic chain from F2 to F<,

FO  Frame of link ¢ in the kinematic chain C©
CY A serial VKC with n Degree of Freedom (DoF)
q e R"”, the state of VKC in joint space
g  eRF (k<n), the joint goal state
3T A homogeneous transformation from F, to F;
Ty  The goal pose of F; in the world frame

Others

Below, we further summarize the above notations:
» The group Robot refers to notations related to the mobile
manipulator, which consists of three components: mobile
base, manipulator, and end-effector.
The group Object refers to notations related to the ma-
nipulated objects, which could be as simple as a rigid



link or be an articulated object with two or more links

connected by either a prismatic, revolute, or fixed joint.

We introduce a virtual joint defined as an attachment, a

local transformation %! T" from the object’s attachable frame

F9 (i.e., the link a mobile manipulator can grasp on) to

the robot’s end-effector frame FZ.

o The group Others refers to constructed VKC, its state
space, and other related notations in a manipulation task.
Constructing a VKC CV requires the inputs of robot kine-

matic tree T, object kinematic tree 7O, and transformation

from an object attachable frame to the robot end-effector
frame %T. The chain’s forward kinematics (FK), inverse
kinematics (IK), and Jacobians can be effectively solved by

existing kinematic solvers (e.g., KDL [31]).

Assuming a rigid connection between the end-effector and
the attachable link during manipulation, performing a mobile
manipulation task can be regarded as reaching desired VKC
poses. As a result, we treat a mobile manipulation task as
a motion planning problem on the VKC and solve it by
trajectory optimization. Formally, it is equivalent to finding
a collision-free path q;.7 from the initial pose q;,;; to goals
g in joint space and/or goal poses ;*Ty in Euclidean space.

The objective function of the trajectory optimization can
be formally expressed as:

T—1 T—1
. 1/2 .
min Y [[W07 6aulld + Y (IW22 6aullZ, ()
qi:T7 i-1 i—2

wherein we penalize the overall weighted squared traveled
distance of every joint with the finite forward difference
0q: ~ qr+1—q: and overall smoothness of the trajectory
with the second-order finite central difference dq; ~ qs—1 —
2q: +qsy1. Wyer and W, are diagonal weight matrices
for each joint, respectively. q;. represents the trajectory
sequence {¢1, g2, ...,qr}, where q; denotes the VKC state
at the t'" time step.

III. VKC MODELING

The proposed VKC modeling constructs a serial kinematic
chain by (i) incorporating both robot and object kinematics
via a virtual joint and (ii) augmenting a virtual base to the
robot base; see Fig. for a graphic illustration.

A. VKC Construction

Below we formally describe the 4-step procedure of con-
structing the VKC, cv, by consolidating the robot and the
object kinematics models.

a) Original Structure:  The kinematic models of the
mobile manipulator 7% and the manipulated object 7 are
assumed given by the perception module or by the simulator.

b) Kinematic Inversion:  Let us take the task of open-
ing a door as an example. In conventional kinematic notation,
the door is the child link, and the door frame is its parent
link in the original 7. To construct a VKC, this parent-child
relationship needs to be inverted before it can be attached to
the robot’s end-effector, i.e., the door becomes the parent link
that “transforms” the door frame. Of note, such an inversion
also requires updating the joint connecting the two links,

since a joint (i.e., revolute/prismatic) typically constrains the
child link’s motion w.r.t. the child link’s frame.

¢) VKC Construction: After inverting the original
TO, avirtual joint between ]—"l? v and ]—"fe is inserted, whose
transformation is denoted as {$7'. In our application, the
transformation of the virtual joint is updated by the actual
grasping pose right before the VKC construction to minimize
kinematic discrepancies introduced by the execution error.
Next, the motion planner will be invoked to plan following
motions for the actual VKC. The joint type could also be
determined by the grasping type between the gripper and
the object (e.g., revolute joint for grasping a cylindrical
handle, fixed joint for grasping a rigid ball) to alleviate the
inaccuracies during the execution.

d) Virtual Base Frame: A virtual base frame F is
further added and connected to the mobile base through two
perpendicular prismatic joints and a revolute joint, enabling
the mobile base’s omnidirectional motions on the ground
plane.

After the above procedure, the constructed VKC remains
in serial and forms an equality constraint to Eq. (I)):

hchain(Qt):Oa Vt:172,7T (2)

It specifies the kinematics of the VKC, which includes its
forward kinematics and other physical constraints of the
manipulated object; e.g., the manipulated object is fixed to
the ground, which leads to a closed chain: YT, —wT° =
0. Failing to account for this constraint may damage the
manipulated object or the mobile manipulator.

B. Goals

The goal of the mobile manipulation can be formulated as
an inequality constraint, in addition to the equality constraint
introduced by the VKC construction in Eq. (2):

Hftask(qT)_gHg <ggoalv (3)

which bounds the squared [2 norm between the final state in
the goal space fus(qr) and the goal state g with a tolerance
&goa. The function fig : R™ — R* is a task-dependent func-
tion that maps the joint space of a VKC to the goal space
that differs from task to task.

Again, let us take the example of opening a door. In the
first phase when the robot is reaching the door handle, fis(-)
maps the joint space of a VKC to the robot’s end-effector
pose. In this case, the goal g is the robot’s end-effector
pose ¢. 1y, and Eq. can be rewritten in a simplified
form || fac(qr) —¥T4l|5 <&goar- In the second phase when
the robot is opening the door, fis(-) maps VKC’s joint
space to the joint of the door’s revolute axis. Hence, g is
merely the angle € of the revolute joint, and the trajectory of
the other joints in the VKC are implicitly generated by the
optimization process, together with obstacle avoidance and
trajectory smoothing. Of note, Eqs. (Z) and (3) are not the
only forms of constraints that a VKC-based approach can
incorporate; in fact, it is straightforward to add additional
task constraints to the same optimization problem in Eq. (I),
depending on various task-specific requirements.



C. Additional Constraints

During the trajectory optimization, we further impose
several safety constraints. Without loss of generality, we
assume an omnidirectional base and purely kinematic con-
straints in this paper. However, extra constraints, such as
nonholonomic constraints for non-omnidirectional mobile
bases or dynamic constraints for arms, could be formulated
into the optimization problem by incorporating additional
time, first-order, or second-order terms [32].

qnlingqtgqmaxv Vt:17277T (4)
H(sthOO <é-veh H(SthOO ggélCCa Vt=2737 ... 7T_1 (5)
Niink Nobj
D77 Mdistare— fais(Li, O)| 7 < i, (6)
i=1 =1
Niink Niink
D distae—faise(Li, L;)| ¥ <&ais- (7)
i=1j=1

Eq. is an inequality constraint that defines joint limits,
in which q™* and q™®* specify the lower and upper
bound of every joint, respectively. Eq. (3) is an inequality
constraint that bounds the joint velocity by &, and the joint
acceleration by &, to obtain a feasible trajectory that can be
executed without saturation. || ||o; denotes the infinity norm.

Egs. (€) and are inequality constraints that check
link-object collisions and link-link collisions, respectively,
where Nijnx and Ny, are the number of links and the
number of objects, respectively. distg,. is a pre-define safety
distance, and fg(-) is a function that calculates the signed
distance [26] between i-th link L; and j-th object O;; the
function |-|* is defined as |z|* = max(z, 0).

The inequality constraints introduced by Egs. (6) and
make the preceding optimization problem highly non-convex
and unsolvable by a generic convex solver. In this paper,
we approximate it by a sequence of convex problems [26],
solved by a sequential convex optimization method.

D. Advantages

As formally derived in the above sections, solving mobile
manipulation as trajectory optimization using the proposed
VKC-based approach introduces two advantages:

1) Eliminating unnecessary intermediate goals. Let us
use the example of opening a door: Only one goal—
the door’s angle to be opened to—is required. The final
poses of the mobile base and the manipulator are directly
produced during the trajectory optimization process with-
out manually specifying unnecessary intermediate goals.
Hence, the VKC-based approach provides versatility and
simplicity for modeling mobile manipulation tasks.

2) Coordinating locomotion and manipulation. Using
VKCs, the trajectory optimization jointly generates tra-
jectories of the mobile base and the manipulator, produc-
ing coordinated locomotion and manipulation, which is
oftentimes challenging for conventional methods.

These two advantages are crucial for a service robot op-
erating in a household environment. Below, we demonstrate
these advantages in a series of mobile manipulation tasks.

IV. MOTION PLANNING ON VKCs

In this section, we start with simulation setup, followed
by the evaluation of the trajectory-optimization-based motion
planning on VKC from three perspectives: (i) the necessary
trajectory initialization required by the motion planner, (ii)
the improvement on base-arm coordination using the VKC
approach compared with traditional setups that have to plan
their motions separately, and (iii) the capability of operating
in a household environment and performing various tasks.

A. Platform and Simulation Setup

The service robot platform we adopted for testing is a
Universal Robot URS5e manipulator mounted on a Clearpath
Husky A200 UGA; see Fig. Pb for a graphic illustration.
The simulation environment is an arena with 10m x 10m in
size, discretized into 100 x 100 grids. All the experiments
are conducted using a desktop with an Intel i7-9700K CPU,
running with ROS-Industrial Tesseract [33].

B. Trajectory Initialization

Although a gradient-descent-based algorithm can effec-
tively solve the trajectory optimization problem on VKCs,
it may also be easily stuck at local minima near the given
initial trajectory [25,26]. As a result, a proper trajectory
initialization is favored to improve the optimization result.
Two primary trajectory initialization methods [34] are:

1) Stationary: The trajectory q;.r is initialized by way-
points q; that are the same as the initial pose qinit-

2) Interpolated: The trajectory qi.r is initialized by way-
points that are linearly interpolated between the initial
pose qiyi; and the goal pose (not g or ¢, T}; see below).
In this paper, we further devise an A*-based trajectory ini-

tialization method, which adopts A* to search for a feasible

path given the initial and the goal pose of the mobile base.

Next, we investigate how different trajectory initialization

methods affect the planning results on VKC in three 3D

virtual scenarios; see Figs. @] to The robot’s task is to
pick up the rigid stick and use it to reach a target indicated
by the red cube. This task consists of three steps: navigate to
the stick, manipulate the stick and pick it up, and navigate
to and reach the target with the stick. The three scenarios
designed for evaluation are in increasing complexity: no
obstacle (Fig. [3a)), two small obstacles (Fig. Bb), or a much
larger one (Fig. [3c). Experimental results reported below are
the average of 50 different initial poses, each with 10 times.

A successfully optimized trajectory is a converged result
without violating any constraints (e.g., collisions). Fig.
compares success rates. When the environment is clean (Sce-
nario 1), even the simplest Stationary trajectory initialization
method performs well. When there is additional complexity
introduced by the obstacles (Scenario 2), the Stationary
method deteriorates, whereas the Interpolated method still
maintains a high success rate. When the navigable space is
significantly reduced (Scenario 3), only the proposed A*-
based initialization method can consistently perform well to
generate feasible plans. Taken together, experimental results
indicate that combining the proposed A*-based initialization
with the optimization-based motion planner can well handle
the challenging motions that require combining navigation
and manipulation in cluttered space with obstacle avoidance.
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Fig. 3: Comparisons of motion planning on VKCs by different
trajectory initialization methods. (a)-(c) The experimental scenar-
ios in increasing complexity. The robot’s initial pose is uniformly
sampled within the blue region; it is tasked to pick up the stick
and use it to reach the red cube. (d) The proposed A*-based
trajectory initialization has the highest success rates (almost always)
in generating a feasible plan. In comparison, the Stationary method
fails to generate feasible plans in scenario 2 and 3. Similarly, the
Interpolated method struggles in scenarios 3 (30% success rate).

C. Comparisons with Baselines

We design two mobile manipulation tasks to validate the
advantages of the proposed VKC modeling: (i) rotating the
doorknob and pushing to open a door (with two revolute
joints), and (ii) pulling to open a drawer (with one prismatic
joint); see Figs. [Ae|and #m| The robot starts from a uniformly
sampled initial pose in the blue-shaded regions.

To benchmark the proposed VKC-based approach, we
design two baselines that have to individually optimize the
mobile base and mobile manipulator’s trajectories. Baseline
1 (B1): Use the proposed A*-based trajectory initialization
to first plan the mobile base’s motion, and the arm pose is
then found by solving the inverse kinematics from the door
handle to the mobile base at each way-point. Baseline 2 (B2):
On top of B1, the manipulated object and the manipulator’s
poses are further refined at each time step to avoid collisions
between the mobile manipulator and the environment.

Of note, our VKC-based approach only needs to specify
one task goal—the desired door angle or the proper drawer
length. In contrast, baselines require additionally specifying
the mobile base’s pose when reaching the doorknob and after
opening the door, as the base and the manipulator are planned
and optimized individually. We compute these intermediate
mobile base’s poses by sampling from feasible regions that
are empirically found; see the pink areas in Figs. fe] and
for reaching and the green areas for final poses.

We evaluate the planning results by four criteria: (i)
the percentage of task completion without violating the
constraints as the success rate, (ii) the total base traveling
distance as the base’s effort, (iii) the sum of each joint’s
accumulated angular displacement during the entire task
execution as the manipulator’s effort, and (iv) planning time.

We summarize results in Fig. [ Planning individually (B1)
yields a 48% and a 74% success rate for opening door and

Task 1: Push to open a door.
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Fig. 4. Quantitative comparisons between the VKC-based ap-
proach and two baselines on two mobile manipulation tasks:
push to open a door, and pull to open a drawer. Modeling
a mobile manipulation using VKC leads to (a)(i) higher success
rate and more effective trajectories in terms of smaller (b)(j) base
and (c)(k) manipulator’s efforts, but requires (d)(1) longer planning
time. Of note, baselines require additional definition of intermediate
goals, which are often empirically found, (e)(m) shown in the green
and pink shaded areas. (f)(n) Typical failure cases of two tasks in
B1 are due to collision. Typical failure cases of two tasks in (g)(0)
B2 or (h)(p) VKC-based approach are due to constraint violations.

drawer, respectively. The primary reason for failure is the col-
lisions between the mobile manipulator and the door/drawer;
see Figs.[df]and[@n] Although introducing a collision check to
refine motions (B2) improves the success rate, the proposed
VKC-based approach significantly outperforms the baselines.
The failure cases of B2 are mainly caused by violating
velocity and acceleration constraints; see Figs. fg] and Fo]

Planning on VKCs yields more efficient motions with less
base and manipulator efforts; see an instance in Fig. [§] Over-
all, the proposed VKC-based approach produces smoother
trajectories with less fluctuation in the speed profile.

Taken together, our experimental results demonstrate that
by using the proposed VKC-based approach, the planning
of mobile manipulator avoids contrived definitions of inter-
mediate poses and achieves a higher success rate with more
efficient motions, at the cost of a slightly longer planning
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time due to solving the trajectory optimization problem with
higher DoFs compared to those in the baselines.

D. Complex Tasks

We further test the VKC modeling in a confined household
environment with six daily manipulation tasks; see Fig. [Sh.
1) Pick up an object randomly sampled on the coffee table
(reachable by the robot) and place it on the dining table.
B2 performs the same as the B1 since the object is fixed
and does not collide with the robot.

2) Push to open a narrow door. The robot needs to coordinate

its foot and arm movements to open a narrow door (1.1

times wider than the robot) and pass through.

3) Open a drawer in the corner. Although space is confined,
the robot only needs a backward motion, which should
be relatively straightforward.

4) Pull out a dishwasher rack, similar to the above task and
also in a confined space. However, it is more challenging
as the robot has to manipulate to its side.

5) Pull to open a refrigerator.

6) Pull to open a cabinet, similar to the above task. However,
since the cabinet has a larger door size, the chair in the
environment will block the robot’s movement.

In a successful trial, the robot should produce a collision-
free trajectory without violating any kinematic or safety
constraints. We compare the results in Fig. Bb with two
baselines (B1 and B2). Overall, the proposed VKC-based
method demonstrates a higher success rate with less base
and arm costs measured by the total distance traveled.

Specifically, in Task 2), B1 can hardly find a path to
go through the door because of the highly constrained free-
space, which requires good foot-arm coordination; task (4)
reveals a similar result. In Task (3), the low drawer height
increases the difficulty for the mobile base to reach a feasible
region; hence, both baselines underperform in terms of their
success rate. An interesting observation is in Task (5) and
(6): The baseline methods perform well in the pulling action,
likely due to the empty space for the furniture doors to swing.

These results provide ample evidence of excellent foot-
arm coordination produced by the proposed VKC-based
approach, well-suited for confined household environments.

V. CONCLUSION AND DISCUSSION

We presented a modeling method that incorporates the
kinematics of a robot’s mobile base, arm, and the manip-
ulated object in VKCs. From this new perspective, a mobile
manipulation task is regarded as a motion planning problem
on VKCs, solved by trajectory optimization. This approach
alleviates the definition of intermediate goals and well co-
ordinates base and arm movements, resulting in a higher
success rate with more efficient trajectories in various mobile
manipulation tasks. Our simulated experiments validate the
advantages introduced by the proposed VKC-based modeling



approach, showing its potential in scaling up to complex
operations in a household environment [35].

we discuss two issues related to the presented work in
greater depth. To deploy the VKC-based method on a phys-
ical service robot, objects’ kinematic structures have to be
identified. Although some existing methods can achieve this
goal by visual sensors [36—40], results could be error-prone,
and a force/torque control framework should be implemented
to handle kinematic discrepancies or uncertainties/errors in
object positions. Additionally, an effective and stable grasp
is a prerequisite of constructing a VKC connecting the robot
and objects. While grasping remains an unsolved problem,
more powerful machine learning-based methods are emerg-
ing [41-43], which could shed light on this direction.
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