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Abstract
In this paper, we rethink the problem of scene reconstruction from an embodied agent’s perspective: While the classic
view focuses on the reconstruction accuracy, our new perspective emphasizes the underlying functions and constraints of
the reconstructed scenes that provide actionable information for simulating interactions with agents. Here, we address this
challenging problem by reconstructing a functionally equivalent and interactive scene from RGB-D data streams, where the
objects within are segmented by a dedicated 3D volumetric panoptic mapping module and subsequently replaced by part-
based articulated CADmodels to afford finer-grained robot interactions. The object functionality and contextual relations are
further organized by a graph-based scene representation that can be readily incorporated into robots’ action specifications
and task definition, facilitating their long-term task and motion planning in the scenes. In the experiments, we demonstrate
that (i) our panoptic mapping module outperforms previous state-of-the-art methods in recognizing and segmenting scene
entities, (ii) the geometric and physical reasoning procedure matches, aligns, and replaces object meshes with best-fitted CAD
models, and (iii) the reconstructed functionally equivalent and interactive scenes are physically plausible and naturally afford
actionable interactions; without any manual labeling, they are seamlessly imported to ROS-based robot simulators and VR
environments for simulating complex robot interactions.

Keywords Functional scene representation · 3D scene reconstruction · Actionable information · Volumetric panoptic
mapping · Physical reasoning · Robot interaction
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1 Introduction

Perception of human-made environments and the objects
within inevitably leads to the course of actions (Gibson, 1950,
1966), which naturally forms the basis for a human agent
to interact with the environment and accomplish complex
tasks. Crucially, what we “see” is much more than pixels and
semantic labels (Knill and Richards, 1996). Instead, we fur-
ther “see” how to interact with them for our task purposes.
Likewise, an embodied AI agent or a robot must possess a
similar perceptual capability to achieve a wide range of task
goals in the physical world. However, this critical perspective
is mostly unexplored by prior scene reconstruction literature
in computer vision or Simultaneous Localization And Map-
ping (SLAM)methods in robotics.Oftentimes, prior arts only
capture scenes’ occupancy information and are evaluated pri-
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marily by reconstruction accuracy in the euclidean space. 
Without incorporating the actionable information—actions a 
semantic entity could afford and the associated physical con-
straints among entities—in a reconstructed scene, a robot can 
only perform relatively simple navigation or pick-and-place 
tasks, hindering its capability of planning and executing tasks 
in a long horizon.

Having the actionable information in a scene is crucial for 
the training and testing of modern embodied AI agents (Batra 
et al., 2020). Existing research efforts are mainly devoted to 
develop simulation platforms that provide (i) photorealistic 
views [e.g., Habitat (Savva et al., 2019), RoboTHOR (Deitke 
et al., 2020)] for navigation, (ii) articulated and interactive 
objects [e.g., iGibson (Xia et al., 2020), SAPIEN (Xiang 
et al., 2020)] for interaction, and (iii) physical simulation 
engines [e.g.VRGym (Xie et al., 2019)] for fine-grained 
fluent changes. While the actionable information can be 
explicitly specified and embedded in the simulation setup, or 
be recognized from a physical scene using dedicated vision 
modules, such as part-based object pose estimation (Li et 
al., 2020), functionality (Zhao and Zhu, 2013) and affor-
dance (Min et al., 2016) recognition, it is non-trivial 
to organize this information and unclear about how an 
agent could utilize such information for various tasks.

Take the scene in Fig. 1 as the example, wherein the 
robot is tasked to pick up a frozen meal from the fridge, 
microwave it, and serve it. The challenges of processing 
actionable information are three-fold. First, it needs to rec-
ognize the semantics and geometry information of objects 
(e.g., this piece of point cloud is a fridge). Although typical 
semantic mapping and segmentation techniques can achieve 
this goal (Hoang et al., 2020; Narita et al., 2019), a more 
robust and accurate approach is still in need to better handle 
the complexity in clustered real environments given a first-

(a)

person-view RGB-D video stream. Second, mere semantics
are inadequate to reflect the actions an object affords (e.g.,
whether or how the fridge can be opened). While some
existing work attempted to identify the associations between
symbolic actions and objects (Myers et al., 2015; Li et al.,
2019) or the underlying object’s kinematics (Sturm et al.,
2011; Chang and Demiris, 2017; Martín-Martín and Brock,
2019), they are insufficient for robots to execute complex
tasks with multiple steps at the motion level. Third, we quest
for a more fundamental question: How to devise a scene
representation with a succinct action specification and task
definition to account for the action opportunities and the
accumulated outcome of executed actions?Without address-
ing these challenges, a robot can hardly plan for the given
task or verify whether its plan is valid before executing in
the physical world.

In this paper, we propose a new task of reconstructing
functionally equivalent and interactive scenes by represent-
ing the actionable information of scene entities to support
agents’ planning and simulation. Herewe argue that a scene’s
functionality is composed by the functions of objects within
the scene. Therefore, the essence of a functionally equivalent
scene is to preserve most objects’ four characteristics with
a decreasing propriety: (i) their semantic class and spatial
relations with nearby objects, (ii) their affordance, e.g., what
interactions they offer, (iii) similar geometry in terms of size
and shape, and (iv) similar appearance. To address this new
task, we devise a robot perception system with three unique
components; see an illustration in Fig. 2.

(A) A robust 3D volumetric panoptic mapping module,
detailed in Sect. 3, accurately segments and recon-
structs 3D objects and layouts in clustered scenes based
on potentially noisy per-frame segmentation. The term
“panoptic,” introduced in Kirillov et al. (2019), refers
to jointly segmenting stuff and things in semantic and
instance levels. In this paper,we regardobjects as things
and layouts as stuff. Thismodule produces a volumetric
panoptic map using a novel per-frame panoptic fusion
strategy and a global data fusion procedure performing
data association, map integration, and map regulariza-
tion; see Figs. 1b and 2a for examples of results.

(B) A physical reasoning module, detailed in Sect. 4,
replaces the potentially noisy and incomplete object
meshes segmented from the panoptic map with func-
tional (rigid or articulated) CAD models. This step is
achieved by a ranking-based CAD matching and an
optimization-based CAD alignment, which accounts
for both geometric and physical constraints. We fur-
ther introduce a global physical violation check to
ensure that the resulting reconstructed interactive scene
is physically plausible.

(c)
)

Fig. 1 The reconstruction of a functionally equivalent, interactive 3D 
scene. (a) A contact graph is constructed by the supporting relations 
that emerged from (b) panoptic mapping. By reasoning their affor-
dance, functional objects within the scene are matched and aligned 
with part-based interactive CAD models. (c) The reconstructed func-
tionally equivalent scene enables a robot to simulate its task execution 
with comparable outcomes in the physical world.
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(A) (B)

(C)

Fig. 2 System architecture for reconstructing a functionally equivalent 
scene. (A) Per-frame segmentation and global data fusion produce (a) 
a 3D volumetric panoptic map with fine-grained semantics and 
geometry, served as the input for (B) physical common sense reason-
ing that matches, aligns, and replaces segmented object meshes with 
functionally equivalent CAD alternatives. Specifically, (b) by geomet-
ric similarity, a ranking-based matching algorithm selects a shortlist of

(C) A contact graph cg representation, detailed in Sect. 2
and illustrated in Fig. 3, is constructed in accordance
with the supporting and proximal relations among
objects and imposes physical constraints as well as
kinematic information for a robot’s task execution.
After retrieving actionable information annotated in
CAD models, this novel representation indicates how
an object can be moved or manipulated (e.g., a table
can be moved in 3D space) and how nearby objects
would move correspondingly (e.g., a box on the table
would go through a similar transformation if not slid
or tilted). The cg can be interpreted as and converted
to a kinematic tree, which is updated following the
robot’s actions so that it can support long-horizon task
and motion planning. As such, it serves as an ideal
representation that bridges robot perception (scene
reconstruction) with robot planning.

CAD candidates, followed by an optimization-based process that finds 
a proper transformation and scaling between the CAD candidates and 
object mesh. A global physical violation check is further applied to final-
ize CAD replacements to ensure physical plausibility. (C) This CAD
augmented scene can be seamlessly imported to existing simulators; (c) 
contact graph encodes the kinematic relations among scene entities in a 
scene and reflects the planning space for a robot.

development of such datasets follows three stages. Early 
work, such as NYU-Depth (Silberman et al., 2012) and SUN 
RGB-D (Song et al., 2015), provides single view RGB-D 
images with densely annotated object segmentation, bound-
ing boxes, etc. These types of 2.5D data are primarily 
designed to support recognition and prediction tasks in com-
puter vision. In the second stage, datasets provide full 3D 
(in contrast to 2.5D) scene data in the form of annotated 
meshes for more holistic computer vision tasks (Hua et al., 
2016; Chang et al., 2017; Dai et al., 2017). More recently, 
researchers start to construct synthetic scene datasets (Yu et 
al., 2011; Song et al., 2017; Qi et al., 2018; Jiang et al., 2018) 
to overcome the tedious and error-prone labeling process and 
obtain scene data at a much larger scale. Despite success in all 
three stages, they still fall short for robot learning or planning 
due to the lack of proper means that converts a scanned or 
synthetic scene to an interactive one for robot task execution. 
In comparison, the proposed system can reconstruct interac-
tive scenes from RGB-D streams and directly import them 
into simulators for training and testing of robots’ complex 
task execution.

To gather the scene semantics, modern semantic map-
ping (Narita et al., 2019; Grinvald et al., 2019; Pham et 
al., 2019a) and object SLAM (Yang and Scherer, 2019a; 
McCormac et al., 2018) methods can retrieve object semantic 
segmentation, 6 DoF poses, and 3D bounding boxes during 
reconstruction. Physical cues, such as support and colli-
sion (Yang and Scherer, 2019b; Wada et al., 2020; Sui et 
al., 2020) and robot proactive actions (Xu et al., 2015; Liu
et al., 2018b), can be further integrated to better estimate
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    Part of this work is published in Han et al. (2021); com-
paring with it, this paper highlights the conversion from a 
sensed cg to the Unified Robot Description Format 
(URDF), conducts experiments and analysis in real-world 
setting, and further evaluations including a new study of 
evaluating resulted cg using Graph Editing Distance (GED).

1.1 Related Work

Scene datasets are crucial for providing supervisions for 
existing data-driven methods in a plethora of scene recon-
struction and scene understanding tasks. In literature, the



International Journal of Computer Vision

(a)

(b)

(c) (d)

single RGB image (Huang et al., 2018b; Chen et al., 2019),
a single RGB-D image pair (Gupta et al., 2015; Zou et al.,
2019), and scanned scenemeshes (Dai et al., 2017; Avetisyan
et al., 2019a, b) to incorporate richer scene semantics. Fol-
lowing this trend, our system further introduces a physical
reasoning procedure to align (part-based) CAD models to
segmented objects to enable robot manipulation and interac-
tion.

Devising an appropriate scene representation for scene
reconstruction remains an open problem (Cadena et al.,
2016). Existing SLAM and semantic mapping approaches
reviewed above oftentimes represent a reconstructed scene
and its entities as sparse landmarks (Pronobis and Jensfelt,
2012; Yang and Scherer, 2019a), surfels (McCormac et al.,
2017; Hoang et al., 2020), volumetric voxels (Grinvald et al.,
2019;McCormac et al., 2018), or semantic objects (Yang and
Scherer, 2019a; McCormac et al., 2018). Such a paradigm
only provides geo-information of what and where to a robot
without any actionable information for its interactions or
planning. Meanwhile, graph-based representations for 3D
scene further identify the hierarchical and relational structure
among the scene entities (Zhu andMumford, 2007; Zhao and
Zhu, 2011, 2013; Zheng et al., 2015; Huang et al., 2018a;
Jiang et al., 2018;Chen et al., 2019;Armeni et al., 2019;Wald
et al., 2020; Rosinol et al., 2020), providing better structural
and contextual information of the reconstructed scenes. In
particular, Rosinol et al. (2020) explicitly incorporate action-
able information to support robot planning, though limited to
navigation and traversal tasks as the representation onlymod-
els the connectivity between entity nodes. By leveraging the
advantages of prior arts and addressing the shortcomings, the
proposed system takes a real RGB-D stream as input and pro-
duces a contact graph representation based on the identified
supporting relations among scene entities. This representa-
tion for scene reconstruction indicates how an entity can be
interacted with and what the effect would be after an inter-
action, capable of supporting more complex manipulation
planning.

1.2 Contributions

Toour knowledge, ours is thefirstwork that introduces a com-
prehensive system that reconstructs a full 3D scene from an
embodied agent’s perspective to provide actionable informa-
tion for simulating robot interactions. It makes three major
contributions:

1. We introduce a novel scene representation, contact graph,
whose structure is determined by the supporting and prox-
imal relations among scene entities. It imposes physical
constraints for a physically plausible scene and kinematic
information that indicates whether and how an object can
be interacted with. This contact graph representation is

Fig. 3 3D scene representations and relations within. (a) The contact 
graph representation. Each node denotes an object or a piece of layout, 
reconstructed and segmented as meshes from the RGB-D stream using 
the proposed panoptic mapping module. The directed edges indicate 
supporting relations—The parent node supports the child node. (b) The  
object meshes are replaced by best-fitted CAD models to create a func-
tionally equivalent and physically plausible reconstructed scene. The 
directed edges and the constructed kinematic relations define the action 
space for robot planning. By updating the kinematic relations, various 
action effects can be easily integrated. (c) The supporting relations can 
further facilitate a reasoning process that refines (d) the 3D bounding 
box estimation. Initial: dashed line. Refined: solid line.

and refine the scene semantics. In parallel, significant efforts
have been made for object instance segmentation from point
clouds (Zhang et al., 2019); e.g., Yi et al. (2019) can segment
an object with fine-grained part instances, and Pham et al.
(2019b) jointly perform semantic and instance segmentation.
The above work, however, could only produce incomplete
objects (in contrast to full 3D) due to confined viewpoints
in the physical world, which prohibits the complex robot
interaction and task execution in the reconstructed scenes.
To alleviate this issue, researchers have recently attempted
to align CAD models to these incomplete objects based on a
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constructed and maintained for the scene reconstruction,
and converted to a kinematic tree, which reflects the full
geometric state of a scene and can update to keep track
of every interaction. As such, our contact graph repre-
sentation can facilitate the functionally equivalent scene
reconstruction, as well as the robot learning and planning
for complex long-horizon tasks.

2. Leveraging (i) local geometric similarity based on rel-
ative sizes and extracted surface planes of objects, and
(ii) global physical constraints regarding the plausibility
of stable support and non-penetration, we align rigid or
articulated CAD models to object meshes to generate a
physically plausible, fully interactive scene.

3. We develop a volumetric panoptic mappingmodule based
on Grinvald et al. (2019) and introduce new designs to
improve the accuracy in per-frame segmentation and the
consistency in global data fusion.We show that this imple-
mentation is more robust against noisy input data and
generates more accurate panoptic segmentation results,
especially suitable for challenging and clustered indoor
scenes.

2 Contact-Based Scene Representation

We devise a graph-based representation, contact graph cg, to
represent a 3D indoor scene and the relations among scene
entities. Formally, a contact graph cg = (pt, E) contains
(i) a parse tree (pt) that hierarchically organizes the scene
entities (Zhu andMumford, 2007), and (ii) the proximal rela-
tions E among entities represented by undirected edges; see
an example in Fig. 3a.

2.1 Representation

Scene parse tree pt = (V , S) has been used to represent the
hierarchical decompositional relations (i.e., the edge set S)
among entities (i.e., the node set V ) in various task domains,
including 2D images and 3D scenes (Zhu and Mumford,
2007; Zhao and Zhu, 2011, 2013; Qi et al., 2018; Jiang et
al., 2018; Huang et al., 2018b, a; Chen et al., 2019), videos
and activities (Zhu et al., 2015, 2016; Qi et al., 2020; Jia et
al., 2020), robot manipulations (Edmonds et al., 2017; Liu
et al., 2018a; Edmonds et al., 2019; Liu et al., 2019; Zhang
et al., 2020), and theory of mind (Yuan et al., 2020). In this
paper, we adapt pt to represent supporting relations among
entities instead of their decomposition. A pt is dynamically
built and maintained during the reconstruction based on the
identified supporting relations among segmented scene enti-
ties; for instance in Fig. 3a, the table1 is the parent node
of the microwave. Supporting relation is quintessential in
scene understanding as it reflects the omnipresent physical
plausibility; i.e., if the table were moved, the microwave

would move together with it. This perspective of physical
common sense goes beyond occupancy information (i.e., the
geometric location of an object); in effect, it further provides
actionable information and the potential outcome of actions
for robot interactions and task execution in the scene.

Scene entity nodes V = {vs}∪V L ∪V R ∪V A include: (i)
the scene node vs , serving as the root of pt , (ii) layout node
set V L , including floor, ceiling, and the walls that bound the
3D scene, (iii) rigid object set V R , wherein each object has
no articulated part (e.g., a table), and (iv) articulated object
set V A, wherein each object has articulated parts to be inter-
acted for robot tasks (e.g., fridge, microwave). Each non-root
node vi = 〈oi , ci , Mi , Bi ( pi , qi , si ),�i 〉 encodes a unique
instance label oi , a semantic label ci , a full geometry model
Mi (e.g., a triangle mesh or a CAD model), a 3D bounding
box Bi (parameterized by its center position pi , orienta-
tion qi , and size si , all in R

3), and a set of surface planes
�i = {πk

i , k = 1 · · · |�i |}, where a plane πk
i is represented

by a homogeneous vector [nki T , dki ]T ∈ R
4 in the projective

space (Hartley and Zisserman, 2003) with unit plane normal
vectornki ,where anypointv ∈ R

3 on the plane satisfies a con-

straint: nki
T ·v+dki = 0; see Fig. 3c for an illustration. Com-

pared to other geometric primitives like generalized cylinders
(Agin and Binford, 1973), planes are advantageous in that
they can be extracted robustly from corrupted object meshes
and are effective features in downstream computations.

Supporting relations S is the set of directed edges in pt
from parent nodes to their child nodes. Each edge sp,c ∈ S
imposes physical common sense between the parent node
vp and the child node vc. These constraints are necessary to
ensure that vp supports vc in a physically plausible fashion:

(1) Geometrical plausibility. The parent node vp should
have a plane π s

p = [nspT , dsp]T that is horizontal and is
in contact with the bottom surface of the child vc:

∃π s
p ∈ �p, nsp

T · g � ath,

s.t . D(vc,π
s
p) = pgc − (−dsp + sgc /2) = 0,

(1)

where g is a unit vector along the gravity direction,
ath = −0.9 is a tolerance coefficient (ath = −1 for
a perfect horizontal plane), and pgc and sgc denote the
position and size of vc’s 3D bounding box along the
gravity direction, respectively.

(2) Sufficient contact area for stable support. Formally,

A(vp, vc) = A(vp ∩ vc)/A(vc) ≥ bth, (2)

where A(vc) is the bottom surface of vc’s 3D bounding
box, and A(vp ∩vc) is the area of the overlapping rect-
angle containing themesh vertices of vp nearπ s

p within
vc’s 3D bounding box. We set threshold bth = 0.5 for
a stable support.
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Proximal relations E introduce links among entities in
the pt . It imposes additional constraints by modeling spatial
relations between two non-supporting but physically nearby
objects v1 and v2: Their meshes should not penetrate with
each other, i.e., Vol(M1 ∩M2) = 0. Note that we only assign
a proximal relation between two objects with overlapping
3D bounding boxes, i.e., when Vol(B1 ∩ B2) > 0, instead
of between every pair of objects to reduce computation cost.
The non-penetration constraints will be applied when select-
ing physically plausible scene configurations, as detailed in
Sect. 4.4.

2.2 Constructing Contact Graphs

For each scene entity x extracted from the volumetric panop-
tic map (see details on obtaining panoptic map in Sect. 3.4),
we initialize a scene entity node vx of cg by: (i) acquir-
ing its ox , cx , Mx from the panoptic map, (ii) estimating a
gravity-aligned, minimal 3D bounding box Bx ( px , qx , sx )
based on Mx using the method in Malandain and Boissonnat
(2002), and (iii) detecting a set of surface plane �x on Mx

by iteratively applying RANSAC (Taguchi et al., 2013) and
removing plane inliers. We further classify each initialized
scene entity node vx as a layout node, a rigid object node, or
an articulated object node based on its semantic class cx .

Given a set of scene entity nodes initialized on the fly,
we apply a bottom-up process to build up the structure of
cg by estimating supporting relations among the entities.
Specifically, for each node vc, we find a parent node vp

with a supporting plane π s
p that best satisfies the constraints

described in Eqs. (1) and (2). We consider all nodes {vi }
whose bottom planes are spatially below the 3D bounding
box of vc as candidates of vp, and acquire their gravity-
opposed surface planes {πk

i } as potential supporting planes.
Then the most likely supporting relation is determined by
maximizing the following score function:

S(vc, vi ,π
k
i ) =

{
1 − min

[
1, ‖D(vc,π

k
i )‖

]}
× A(vi , vc),

(3)

where the first term indicates the alignment between vc’s
bottom surface bottom surface and the supporting plane, and
the second term reflects an effective supporting area, both
normalized to [0, 1]. We may also uncover an invisible sup-
porting plane (e.g., a fully occluded tabletop). When vc is
well-overlapped with vi but vi has no valid supporting plane,
the bottom plane of vc will be registered as a new supporting
plane of vi . This advantage is, however, hard to guarantee
at all time due to the complexity of real-world scenarios.
Finally, we construct cg and assign the attributes for each
supporting edge based on the estimated supporting relations.

We further refine the 3D bounding box Bi of each scene
entity node vi such that Eq. (1) is strictly satisfied and the cg is
feasible. This step also compensates for the error of extracting
geometric features directly from an incomplete reconstructed
mesh. Fig. 3d illustrates an example of the refinement pro-
cess. The reconstructed scene only produces a partialmesh of
the chair; its legs are captured incompletely.Consequently, its
3D bounding box (in dashed line) only encloses the detected
portion of the chair floating in the air. By determining the
supporting relation between the floor and the chair, our sys-
tem automatically extends the bounding box (in solid line)
to the supporting plane on the floor, and thus reconstructs
a physically plausible scene. In experiments, we also quan-
titatively evaluate this refinement process; see the result in
Table 4. As the last step of cg construction, we determine
the proximal relations by comparing pairwise 3D bounding
boxes of scene entities.

2.3 Interpreting a Contact Graph

As shown in Fig. 3a and described above, a cg hierarchi-
cally organizes segmented scene entities with corresponding
semantics, meshes, and extracted geometric features. To con-
vey richer actionable information, we convert the cg to a
functionally equivalent cg′ by maintaining the overall graph
structure and replacing each object mesh with a CAD model
while preserving its semantic class, instance label, relative
dimensions, and surface planes; see Fig. 3b.

The functionally equivalent cg′ with CAD models natu-
rally encodes the full (detected) geometry state of the scene. It
can be interpreted as a kinematic tree, where nodes represent
links, and edges represent joints connecting two links with
assumed joint type, range, and joint value. Depending on the
semantic class, individual objects may be replaced by artic-
ulated CAD models. For instance, the CAD model for the
microwave in Fig. 3b consists of two parts, the body and the
door, connected by a revolute joint. The cg′ (the kinematic
tree) is an ideal representation to support robot planning;
its joint specifications reflect the possible ways a robot can
change environment states and naturally define the task goal
for a robot to achieve. Although the knowledge of the object
structure is injected when designing the CAD model and is
not likely to match with the real one strictly, it nevertheless
provides an approximation for most of the possible actions
an agent can take and what the actions like, sufficient for the
agent’s long-term planning.

3 Robust Panoptic Mapping

Robust and accurate mapping of scene entities and seg-
menting them from clustered environments are essential for
constructing a cg and serving our downstream tasks. We
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develop a robust 3D panoptic mapping module to gener-
ate object and layout segments in the form of meshes from
RGB-D streams; see the pipeline in Fig. 2A. Based on the
architecture of Voxblox++ (Grinvald et al., 2019), our map-
ping module incorporates crucial modifications to improve
the robustness ofmapping against noisy and inconsistent seg-
mentation at each frame.

Voxblox++ builds a volumetric object-centric semantic
map by (i) generating per-frame segments in point cloud
form by combining RGB-based instance segmentation and
depth-based geometric segmentation, and (ii) associating the
segments across different frames and integrating them into
a Truncated Signed Distance Field (TSDF)-based object-
level global map. Each per-frame segment is obtained by
assigning a semantic label and an instance label produced by
instance segmentation to a geometric segment produced by
geometric segmentation. Assuming that segments computed
using geometry cues are consistent across different frames,
Voxblox++ associates those per-frame segments from differ-
ent views with global map segments by their 3D overlapping
ratio and integrates them into the global map, while record-
ing the history of predicted semantic and instance labels for
each global map segment.

However,weobserve twomajor limitations ofVoxblox++.
First, the generated per-frame segments may not preserve all
predicted instances and some segments of far-away back-
ground may be labeled as foreground objects, hindering the
mapping performance. We design two extra steps to handle
this limitation, as detailed in Sect. 3.1. Second, Voxblox++
separately tracks semantic and instance labels in data associ-
ation and map integration processes, making it less coherent
when identifying instance and recognizing semantics for the
same global map segment. Our solution is to jointly account
for semantic and instance labels throughout the procedure to
build a more consistent global map. We describe our imple-
mentation of this strategy in data association (Sect. 3.2), map
integration and regularization (Sect. 3.3), and scene entity
extraction (Sect. 3.4).

3.1 Per-Frame Segmentation and Fusion

Following Voxblox++ (Grinvald et al., 2019), we perform
RGB-based panoptic segmentation and depth-based geomet-
ric segmentation for each frame and then combine the two
sets of segments. Given a RGB-D image as the input, we
use an off-the-shelf panoptic segmentation tool provided by
Detectron2 (Wu et al., 2019) to produce panoptic segments
in RGB domain. A convexity-based depth segmentation
approach (Furrer et al., 2018) can segment the correspond-
ing depth image following geometric boundaries. We denote
each predicted 2D panoptic segment as Mi with semantic
label ci and instance label oi (whereas each stuff class has
only one instance label) and each 3D geometric segment (in

point cloud) asG j . Then the goal is to fuse the segmentations
from two sources to generate per-frame point cloud segments
{(Pk, ck, ok)}, which preserve the predicted geometric and
semantic information.

Voxblox++ generates {(Pk, ck, ok)} by assigning seman-
tic and instance labels to geometric segments {G j } greedily
based on the 2D overlap between the 2D projection of each
G j and {Mi } on the image coordinate. In practice, this strat-
egy leads to two drawbacks. The first one is that predicted
instances will be ignored if they are not recognized geomet-
rically in depth images. Figure 2A shows an example; the
missing keyboard marked by a green circle in depth segmen-
tation would be discarded by Voxblox++. We instead split a
geometric segmentG j to extract the point cloud correspond-
ing to a panoptic segment Mi if the 2D projection ofG j fully
contains Mi when aligned. Then we assign semantic and
instance labels for all G j as well as the extracted point cloud
segments as Grinvald et al. (2019) do to get {(Pk, ck, ok)}.
Second, an inaccurately segmented object inRGB imagemay
consist of far-away geometric segments in depth, e.g., the
floor marked by a red circle is regarded as part of the chair
in the panoptic segmentation in Fig. 2A. Our modification
addresses this issue by adding an extra step of Euclidean clus-
tering. We compute pairwise Euclidean distances among all
geometric segments that belong to the same object instance
and applyEuclidean clustering to obtain clusters of segments.
Then we retrieve the largest cluster defined as having the
largest total number of points in its segments and keep the
segments within as part of the instance. The rest of segments
are regarded as outliers and assigned to the background.

The above implementation relies on some defined heuris-
tics that could limit the generalizability of our panoptic
segmentation approach; one direction to overcome this lim-
itation is to introduce data-driven methods, which is beyond
the scope of the paper. Nevertheless, the two proposed steps
are useful practices that significantly improve the per-frame
segmentation.As an example shown inFig. 2a, ourmethod (i)
correctly segments the keyboard anddivides the twomonitors
when they are geometrically under-segmented, (ii) obtains
geometrically refined panoptic segmentation of the table,
chair, and floor, and (iii) excludes the far-away ground from
the segmentation of the chair.

3.2 Data Association

We associate each per-frame point cloud segment to a global
3D segment (or global segment for short) in the global map,
while associating its panoptic predictionwith a global panop-
tic entity. Note that the global segments and panoptic entities
are maintained and updated throughout the entire mapping
process. Following Voxblox++ (Grinvald et al., 2019), we
first draw the correspondence between per-frame segments
and global segments greedily based on their 3D overlaps
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given the camera pose. We denote that each global segment
is indexed with a unique segment label l ∈ L.

For each per-frame segment (Pk, ck, ok) associated with
a global segment li , we aim to find its associated global
instance label pm by looking at the past panoptic predictions
of segment li . We introduce a triple-wise count Φ(l, c, p)
over a segment label l, a semantic label c, and an instance
label p in the global map to jointly track the semantic and
instance predictions. This is inspired by the observation that
the prediction of instances and their semantic labels are
inter-dependent in typical object detection and segmentation
algorithms (Ren et al., 2016;He et al., 2017). Specifically, pm
is assignedwith the instance label p thatmaximizes the count
Φ(li , ck, p) > 0. When

∑
p Φ(li , ck, p) = 0, we assign a

new global instance label pm = pnew.

3.3 Map Integration and Regularization

We integrate per-frame segments into the 3D volumetric
panopticmapby (i) integrating the segments into aTSDFvol-
ume (Oleynikova et al., 2017) with each TSDF voxel labeled
with a global segment label l, and (ii) recording the associ-
ated panoptic entities. For any per-frame segment associated
with (li , ck, pm), we increase the triple-wise count:

Φ(li , ck, pm) = Φ(li , ck, pm) + 1 (4)

We also introduce a two-stage process to regularize the
map by merging global segment labels and instance labels.
Specifically, we first merge global segment labels pairwise if
they share voxels over a certain ratio (Grinvald et al., 2019).
Next, we merge two global instance labels p1, p2 ∈ P with
the same semantic class c ∈ C if the duration of association
with common segment labels exceeds a threshold:

∑
l∈L∩

[Φ(l, c, p1) + Φ(l, c, p2)] ≥ mth ·
∑
l∈L

[Φ(l, c, p1)

+Φ(l, c, p2)] , (5)

where L∩ = {l ∈ L|Φ(l, c, p1) > 0, Φ(l, c, p2) > 0}.
This step merges incorrectly split instances, which can be
introduced by the overcautious filtering step when generat-
ing per-frame point cloud segments. We note that this map
regularization process can be regarded as a delayed data asso-
ciation that corrects potentially wrong association of global
segments and instances. It helps improve the consistency and
scalability of the global map; i.e., it reduces the map size.

3.4 Panoptic Entities Extraction

After the above mapping process, we extract the panoptic
entities (i.e., objects and layouts) from the global map as

triangle meshes. For each global segment l, its semantic class
ĉl and global instance label p̂l are determined following a
greedy strategy:

ĉl = argmaxc∈C
∑
p∈P

Φ(l, c, p),

p̂l = argmaxp∈P Φ(l, ĉl , p).

(6)

For each global instance label p ∈ P, we group all global
segments in the map with labels in the set L p = {l ∈ L| p̂l =
p} and extract the corresponding TSDF volume, from which
a mesh is created. In a nutshell, our system outputs a set
of scene entities in the form of triangle meshes with their
instance labels and semantic labels.

4 Scene Reconstruction with CAD
Replacement

Due to occlusion or limited camera angle, the reconstructed
scene and the segment meshes are oftentimes incomplete
and non-interactive before being recovered as full 3D mod-
els; Figs. 5a and 6a show some examples of incomplete
meshes. We introduce a multi-stage framework to replace
a segmented object mesh with a CAD model through (i)
an object-level CAD matching, (ii) pose alignment of the
CADmodel, and (iii) a scene-level, global physical violation
check; see Fig. 2B for an illustration of the framework.

4.1 CAD Pre-processing

We collect a CAD database consisting of both rigid and artic-
ulatedCADmodels, organized by semantic classes. The rigid
CADmodels are obtained from ShapeNetSem (Chang et al.,
2015), whereas articulated ones are first assembled and then
properly transformed into one model. Each CAD model is
transformed to have its origin and axes alignedwith its canon-
ical coordinates. Figure 2B shows some instances of CAD
models in the database, and Fig. 4 highlights some articulated
CAD examples with coordinate frames on the articulated
parts. All the objects can be uniformly scaled while per-
severing transformation and kinematic information for the
subsequent matching and alignment. Similar to a segmented
scene entity x , a CAD model y is parameterized by oy , cy ,
My , while we further extract its By( py, q y, sy), and �y .

4.2 Ranking-Based CADMatching

Take the chair in Fig. 2b as an example: Given a segmented
object entity x , the algorithm retrieves all CADmodels in the
same semantic category (i.e., chair) from the CAD database
to best fit x’s geometric information. Since the exact orienta-
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Fig. 4 Examples of articulated CAD models in the database

tion of x is unknown at this step yet, we uniformly discretize
the orientation space into 24 possible orientations. For each
rotated CAD model y that aligned to one of the 24 orienta-
tions, the algorithm computes a Matching Error (ME):

D(x, y) = ω1 · ds(x, y) + ω2 · dπ (x, y) + ω3 · db(y), (7)

where ω1 = ω2 = 1.0 and ω3 = 0.2 are the weights of three
terms, set empirically. We detail these terms below.

(1) ds computes the difference of relative 3D bounding
box sizes between the segmented mesh and the CAD model:

ds(x, y) =
∥∥∥∥

sx
‖sx‖2 − sy

‖sy‖2
∥∥∥∥ . (8)

(2) dπ penalizes the misalignment between their surface
planes in terms of plane normal and relative distance:

dπ (x, y) =min
f�

∑
π i∈�x

[∥∥∥∥∥
d(Tx Tπ i )

‖sx‖2 − d( f�(π i ))

‖sy‖2

∥∥∥∥∥

+1 − n(π i )
T · n( f�(π i ))

]
,

(9)

where Tx denotes the homogeneous transformation matrix
from the map frame on the ground to the frame of the bound-
ing box Bx , d(·) the offset of a plane, n(·) the normal vector
of a plane, and f� : �x → �y a bijection function denot-
ing the assignment of feature planes between x and y. Note
that f� is also constrained to preserve supporting planes as
defined in Eq. (1). As computing dπ involves solving an opti-
mal assignment problem,we adopt a variant of theHungarian
algorithm (Jonker and Volgenant, 1987) to identify the best
f� between the set of surfaces extracted from a segmented
object mesh and that from a candidate CADmodel. Then we
can calculate the misalignment error term dπ (x, y) that the
candidate CAD introduces.

(a)

(b) (c)

Fig. 5 Examples of matching and aligning CAD candidates to (a) input
object meshes. (b) All CAD models within the same semantic class
as the input object are retrieved for matching. Matching Error (ME)
indicates the similarity in terms of both shape and the proximity in
orientations. After selecting the candidates with the smallest MEs, (c) a
fine-grained CAD alignment process selects the best CAD model with
a proper transformation based on Alignment Error (AE)

(3) db(y) is a bias term that adjusts the overall matching
error for less preferable CAD candidates:

db(y) = 1 + gT · z(y), (10)

where z(y) denotes the up-direction of the CAD model in
the oriented CAD frame, and g is a unit vector along the
gravity direction. Generally, we prefer CAD candidates that
are upright instead of leaning aside.

Figure 5b illustrates the matching process. Empirically,
we observe that the discarded CAD candidates of “chair”
and “table” due to largeME are indeedmore visually distinct
from the segmented object meshes. Moreover, the “fridge”
model with a wrong orientation leads to a much larger ME
and is thus discarded. These results demonstrate that our
ranking-based matching process can select visually more
similar CAD models with a roughly correct orientation. Our
systemmaintains the top 10 orientated CAD candidates with
the lowest ME for for a more accurate in the next stage.

4.3 Optimization-Based CAD Alignment

The overarching goal of this step to find an accurate transfor-
mation (instead of 24 discretized orientations in the previous
step) that aligns a given CAD candidate y to the original
object entity x , achieved by estimating a homogeneous trans-
formation matrix between x and y:
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T = αR p
0T 1

]
, s.t . min

T
J (x, T ◦ y), (11)

where ◦ denotes the transformation of a CAD candidate
y, J is an alignment error function, α is a scaling factor,
R = Rot(z, θ) is a rotation matrix that only considers the
yaw angle under the gravity-aligned assumption, and p is a
translation. This translation is subject to the following con-
straint: pg = −ds + α · sgy /2, as the aligned CAD candidate
is supported by a supporting plane π s = [ns· T , ds· ].

The objective function J can be written in a least squares
form and minimized by the Levenberg-Marquardt (Mor,
1978) method:

J = eTb �beb + eTp�pep, (12)

where eb is the 3D bounding box error, ep the plane align-
ment error, and �b, �p the error covariance matrices of the
error terms. Specifically: (i) eb aligns the height of the two
3D bounding boxes while constraining the ground-aligned
rectangle of the transformed By inside that of Bx :

eb = [A(T ◦ y) − A(x ∩ T ◦ y), α · sgy − sgx ]T , (13)

and (ii) ep aligns all the matched feature planes as:

ep = [	π1, ...,	π |�x |]T ,

	π i = [−d(π i ) + d(T−T · f�(πi )),

1 − n(π i )
T · n(T−T · f�(π i ))],

(14)

where some of the notations are detailed in Sect. 2.
To evaluate how well an aligned CAD candidate fits the

objectmesh,we compute anAlignment Error (AE) defined as
the root mean square distance between the object mesh ver-
tices and the closest points on alignedCADcandidate; Fig. 5c
shows both qualitative and quantitative results. The CAD
candidate with the smallest AE will be selected, whereas
others are potential substitutions if the selected CADs vio-
late physical constraints, detailed next.

4.4 Global Physical Violation Check

Given a shortlist ofmatched and alignedCADcandidates, we
propose a global physical violation check to finalize the CAD
replacement and generate a physically plausible cg′. We first
validate supporting relations andobject-layout proximal rela-
tions for CAD candidates of each object. Specifically, for an
object node vp and its segmented object entity x , we discard
an aligned CAD candidate y if it fails to satisfy Eq. (2) with
any supporting child vc of vp. We also discard aligned CAD
candidates that violate the proximal constraints with layout
entities.

(b)(a)

(c) (d)

Fig. 6 Given (a) incomplete object meshes, our physical common sense 
reasoning for CAD replacement (b) generates a functionally equivalent 
and physically plausible configuration. Specifically, the CAD matching 
and alignment algorithms select and rank a shortlist of CAD candidates. 
A global physical violation check prunes invalid configurations, such 
as (c) collision and (d) unstable support.

We further check the inter-object proximal constraints and 
jointly select CAD candidates for each object entity. We for-
mulate this step as a constraint satisfaction problem; starting 
with a CAD candidate with the minimum AE for each seg-
mented object, we adopt the min-conflict algorithm (Minton 
et al., 1992) to obtain a global solution of CAD replacement. 
Finally, as the CAD alignment step cannot guarantee the pre-
cise alignment of supporting planes, we adjust the position 
of CAD models so that Eq. (1) is strictly satisfied for each 
supporting relation.

Fig. 6 illustrates a typical example, where specific con-
figurations of CAD replacements lead to unstable support 
or colliding geometry. The global physical violation check 
prunes invalid configurations and outputs a physically plau-
sible one.

4.5 Kinematic Tree Conversion

The finalized cg′ can be readily converted into a kinematic 
tree to support various robot planning tasks. In this work, we 
develop an interface to generate a kinematic tree in the form 
of URDF, which is commonly used in the robotics commu-
nity.

A kinematic tree contains rigid bodies (links) as nodes, 
and joints connecting two bodies as edges. Each node in 
the kinematic tree can be created from either a scene root 
node, a layout node, a rigid object node, or a rigid part of an 
articulated object node in cg′. We preserve the joints within 
articulated CAD models in the kinematic tree, but alter the 
supporting edges in cg′ to either fixed joints (no translation 
or rotation allowed) or floating joints (allow 3D translation
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(a)

(b)

(c)

(e)

(d)

Fig. 7 Convert a contact graph cg′ to a kinematic tree. (a) Given the 3D 
panoptic segmentation produced by our mapping module, (b) a contact 
graph is built and converted to (d) URDF with CAD models, which

and 3D rotation unless constrained by collision) based on 
the semantics of the scene entity pairs. For example, a cup 
is connected to a table using a floating joint as a robot can 
freely manipulate it, and a table is linked to the floor via a 
fixed joint as it cannot be moved.

We show a detailed example of the kinematic tree conver-
sion process in Fig. 7. Based on the 3D panoptic segmentation 
and the contact graph, our interface generates a kinematic 
tree in URDF, which can be further visualized as ROS TF 
and rendered in ROS Rviz.1 In this example, the fridge is 
connected to the floor via a fixed joint, and the bottle to the 
fridge via a floating joint. A revolute joint is inserted to con-
nect the fridge body and the fridge door as specified by the 
CAD model.

1 Additional results are available online at https://sites.google.com/
view/ijcv2022-reconstruction.Code can be found at https://github.com/
hmz-15/Interactive-Scene-Reconstruction.

can be seamlessly (c) imported to and visualized in ROS Rviz; (e) the 
corresponding ROS TF describes the world states to robots.

5 Experiments and Results

5.1 Dataset and Implementation

We evaluate our system primarily on the SceneNN dataset 
(Hua et al., 2016); it contains RGB-D sequences of vari-
ous room-size indoor scenes and ground-truth scene meshes 
annotated with instance-level segmentation. We pick 20 test 
sequences/scenes that contain diverse object categories to 
quantitative evaluate the robust panoptic mapping module 
and demonstrate the interactive scene reconstruction. For 
baselines that require training on 3D segmentation data, we 
roughly follow the train/test split in Hua et al. (2018) while 
using the test set we pick.

In our work, we choose the panoptic segmentation model 
in Detectron2 (Wu et al., 2019), pre-trained on the COCO 
panoptic classes (Lin et al., 2014) for segmentation on RGB.
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We use Furrer et al. (2018) as the geometric segmentation
method for depth images. Of note, our system is designed in
a modularized manner so that it is flexible enough to incor-
porate more powerful models when available. For instance,
the segmentation module is designed as a server-side service
that will be requested by a client in the perception system
when a new image frame arrives and produce a list of seg-
mented masks with labels in the response. Any segmentation
methods being wrapped as a service following this protocol
could be connected to our system.

5.2 Robust Panoptic Mapping

We evaluate our robust panoptic mapping module on three
aspects: (i) 3D panoptic mapping quality, (ii) 3D object
instance segmentation, and (iii) oriented 3D bounding box
estimation. The first aspect focuses on how well the system
reconstructs the scene and segments the objects and layouts
within, whereas the latter two emphasize individual objects.
Such a protocol design provides a holistic evaluation of the
fundamental component of the proposed system: The accu-
racy of object segmentation and bounding box estimation
are crucial for the overall quality of scene reconstruction
whenmatching and aligning CADmodels. An ablation study
(noted as “w/o joint fusion”) is also conducted, where we
disable our modifications of jointly processing semantic and
instance labels in data fusion, i.e., the procedure described
in Sects. 3.2 and 3.3. This study will not only better demon-
strate how much the introduced modifications influence the
overall mapping performance, but also verify the effective-
ness of the per-frame segmentation and fusion technique by
comparing the ablated results with those from baselines.

For each sequence used in the experiment, our mapping
module processes incoming RGB-D frames with ground-

truth camera poses provided by the dataset. We consider 10
semantic classes including 2 stuff classes (wall and floor)
and 8 most common thing classes (bed, table, chair, monitor,
sofa, bag, cabinet, and fridge) for evaluation.

3D panoptic mapping This experiment evaluates the
overall segmentation performance for panopticmapping, fol-
lowing the criteria defined in Kirillov et al. (2019) and Narita
et al. (2019):

PQ =
∑

(p,g)∈T P IoU(p, g)

|T P|︷︷ ︸
SQ

× |T P|
|T P| + 1

2 |FP| + 1
2 |FN |︷︷ ︸

RQ

,

(15)

where the Segmentation Quality (SQ) is the averaged Inter-
section over Union (IoU) of predicted and ground-truth 
panoptic masks on all matched predictions in the same class, 
and the Recognition Quality (RQ) is the F1 score (Martin 
et al., 2004) of object recognition for the aforementioned 10 
semantic classes. Panoptic Quality (PQ) is simply the product 
of SQ and RQ, which better reflects the overall segmentation 
results.

We compare our panoptic mapping module with 
Voxblox++ (Grinvald et al., 2019). Table 1 (white columns) 
shows their PQ, RQ, and SQ on 7 individual SceneNN 
sequences, averaged on 10 classes. Table 2 further tabulates 
per-class panoptic segmentation results of all 20 sequences. 
Of note, we compute PQ, RQ, and SQ in category-level for 
each semantic class (Table 2), and average the PQ, RQ, and 
SQ of all classes to obtain those values at the scene-level 
(Table 1).

Overall, our panoptic mapping module significantly out-
performs the baseline as indicated by higher PQ for individual 
sequences and most of the semantic classes. Without apply-

Table 1 Quantitative class-averaged results of 3D panoptic segmentation and 3D instance segmentation on individual sequences in the SceneNN 
dataset (Hua et al., 2016).

Note that ProgressFusion (Pham et al., 2019a) accounts for more classes than the other two methods. All values are in percentage.
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Table 2 Per-class 3D panoptic segmentation results in the SceneNN dataset (Hua et al., 2016).

All values are in percentage.
The grey columns are meant to indicates that categories “wall” and “floor” belong to “stuff”, and the rest belong to “thing”.

Table 3 Per-class 3D instance segmentation results on the SceneNN dataset (Hua et al., 2016).

Input format bed table chair monitor sofa bag cabinet fridge

MT-PNet (Pham et al. 2019b) Full point cloud 0.0 12.5 42.8 26.5 0.0 0.0 0.0 0.0

MLS-CRF (Pham et al. 2019b) Full point cloud 0.0 27.3 50.9 38.6 0.0 0.0 0.0 0.0

OccuSeg (Han et al. 2020) Full point cloud 66.7 50.0 91.3 76.9 50.0 – 5.7 –

Voxblox++ (Grinvald et al. 2019) RGB-D stream 39.4 22.3 55.6 63.6 72.4 56.4 8.5 51.6

Ours (w/o joint fusion) RGB-D stream 17.4 40.7 51.3 48.1 82.8 53.2 35.4 94.5

Ours RGB-D stream 27.5 46.6 65.3 69.4 64.3 53.2 43.9 94.5

The numbers in bold and numbers in underscore indicate the best and the second best results, respectively. All values are in percentage. 
The italics indicate the input format with no other significance.

Table 4 Per-class oriented 3D bounding box estimation results on the SceneNN dataset (Hua et al., 2016) based on mAP@0.5 metric.

All values are in percentage.

ing joint fusion, our system still performs better than the 
baseline Voxblox++, showing the efficacy of our per-frame 
segmentation. The performance of our full model further 
demonstrates that our proposed strategies positively con-
tribute to objects and layouts recognition (higher RQ value 
indicates higher accuracy) and segmentation (higher SQ 
value).

3D instance segmentation We also evaluate the perfor-
mance of 3D instance segmentation on 8 thing classes using 
the mAP@0.5 metric, i.e., the Mean Average Precision 
(mAP) computed using an IoU with a threshold of 0.5. The 
evaluation is two-fold. First, we report the class-averaged 
results in the progressive mapping manner on 7 individual 
sequences compared with Voxblox++ (Grinvald et al., 2019)

and ProgressFusion (Pham et al., 2019a), another online
semantic mapping framework; see the grey columns in Table
1. Our approach performs better than Voxblox++ on almost
all the sequences. Note that the ProgressFusion accounts for
all NYUDv2 (Silberman et al., 2012) classes available in the
dataset, and we evaluate the performance only on the 8 thing
classes for ourmethod andVoxblox++.While it is possible to
re-train our 2D panoptic segmentation module to incorporate
more classes, we believe the current experiment is sufficient
to demonstrate the advantage of our panoptic mapping mod-
ule without defeating its purpose of leveraging pre-trained
perception models.

Second, in Table 3, we study the per-class mAP@0.5 of
our approach approach compared with Voxblox++ and two
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learning-basedmethods (Phamet al., 2019b;Han et al., 2020)
that directly segment 3D instances from the full point cloudof
scenes instead of continual RGB-D data stream. As the input
formats are different, the results are not directly compara-
ble. They nevertheless provide a better sense about how well
our approach performs. We re-train (Pham et al., 2019b) and
report the results of its two variants on our test set, and adopt
the results reported in Han et al. (2020). Overall, our method
performs significantly better thanVoxblox++ inmost classes,
and our variant without joint fusion still slightly outperforms
Voxblox++. Although OccuSeg appears to perform the best
for object classes that are less likely to be severely occluded
in the dataset, our approach also showcases a unique advan-
tage of handling partially-visibly objects such as cabinets and
fridges that usually attached to a wall.

Oriented 3D bounding box estimation We further evalu-
ate the accuracy of oriented (gravity-aligned) 3D bounding
boxes of object instances, which serve as essential geometric
cues for physical reasoning andCAD replacement. Similarly,
the mAP@0.5 metric is adopted to evaluate the oriented 3D
bounding box estimation on the 8 thing classes. Table 4 tabu-
lates results using the baselinemethod (Grinvald et al., 2019),
two variants described in Pham et al. (2019b), our approach,
and our approachwith supporting-based refinement (detailed
in Sect. 2.2). The results indicate that our approach predicts
their oriented 3D bounding boxes accurately for most object
classes compared with the baselines. The refinement pro-
cess further improves the performance by completing the
partially-observed object boxes. Looking at the two vari-
ants in Pham et al. (2019b), while MLS-CRF introduces an
extra post-processing step using a Conditional Random Field
(CRF) on top of the MT-PNet, its 3D bounding box estima-
tion accuracy drops as extra points from the background are
merged into the foreground objects inCRF regularization.An
interesting disparity between Pham et al. (2019b)’s instance
segmentation results (Table 3) and its bounding box estima-
tion (Table 4) appears—having a zero-score in one place and
turning to positive in another. This is because a subtle change
in segmenting instancesmay lead to a large error in estimated
bounding boxes.

In summary, the above three quantitative evaluations
demonstrate that our robust panopticmappingmodule is well
suited for (i) recognizing and segmenting scene entities pro-
gressively during mapping and (ii) estimating objects’ 3D
oriented boundingboxes in complex and clustered real indoor
environments. The former capability is essential for select-
ing a proper CAD model to replace a segmented object, and
the latter determines the size and scale of that CAD. The
ablation study highlights the performance gain introduced
by our data fusion procedure, demonstrating the success of
jointly dealing with semantic and instance predictions during
mapping.

5.3 Inferred Contact Graph

Having extracted object and layoutmeshes from the volumet-
ric panoptic map, a contact graph cg can be built based on
inferred supporting relations. Evaluating the structure of an
inferred cg collectively reveals the the performance of object
recognition, supporting relation identification, and overall
results. To conduct this evaluation, we annotate the contact
graphs for four scenes in the SceneNN dataset (Hua et al.,
2016) based on their ground-truth segmentation shown in
Fig. 8a.AGraphEditingDistance (GED) (Zhang andShasha,
1989) metric is applied to evaluate the distance between an
annotated contact graph and an inferred graph from a seg-
mented map. Specifically, GED measures the dissimilarity
of two graph by howmany graph editing operations (here we
consider insertion, removal of a node or an edge, and substi-
tution of a node ID, a total of five operations) are needed to
convert one graph to the other.

The results are reported in Table 5, where we compare the
GED between (grey columns) the annotated contact graph
cggt and that inferred from our mapping results cgours , and
between (white columns) cggt and that inferred from ground-
truth segmentation map cgmap. The Total nodes column
indicates the size of cggt , i.e., the number of scene entities a
scene has. The Total distance column shows the total edit-
ing operations required to covert cgours or cgmap to cggt ,
indicating the overall quality of the inferred cg. A qualita-
tive illustration between two graphs is also shown in Fig. 9a.
Three types of errors appeared in an inferred graph: (i)Wrong
support (or wrong edge): a supporting relation is not assigned
correctly, i.e., the parent node of an entity should be another.
(ii) Missing detection (or missed node): an entity is not
detected or segmented and thus not included in the graph.
(iii) Wrong detection (or extra node): an entity that is not
supposed to appear in the graph, and the reasons for hav-
ing extra nodes could be having a wrong semantic label, one
entity is segmented as multiple ones, or both. Figure 9b–d
depict some examples of error in scene 322.

In Table 5, we observe that our system has difficulties in
handling the clustered scene 225 and scene 231 with many
small objects, indicated by the high costs of Missing and
Wrong detection. The relatively low cost caused by Wrong
support indicates that our criteria of determining supporting
relations is effective.

5.4 Interactive Scene Reconstruction

Figure 8 showcases the qualitative results for reconstruct-
ing functionally equivalent and interactive scenes. Given a
volumetric panoptic map (Fig. 8b) and a constructed contact
graph, our system reconstructs a highquality, functionally
equivalent, interactive scene by (i) replacing incomplete
meshes with CAD models and (ii) performing physical
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(b)

(a)

(c)

(d)

(e)

Fig. 8 Qualitative results of four reconstructed scenes with actionable CAD models. With functionally equivalent reconstruction, both robots and 
human users can virtually enter the reconstructed scene for Task and Motion Planning (TAMP) and VR applications.
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Table 5 GED of four scenes between annotated cggt and inferred contact graph from our panoptic mapping results cgours (i.e., Fig. 8b) and from 
ground-truth maps cgmap (i.e., Fig. 8a).

Note that editing a wrong support will need two operations, removing an edge and adding an edge, resulting a graph distance of 2.

(cabinet 266 is not detected), a wrong detection (cabinet 405 is detected 
as oven 399), and a wrong support (cabinet 32 is supported by wall 
instead of supported by cabinet 2), respectively.

both virtual agents and human users, which opens a new 
avenue for future studies. (iii) Fig. 10 presents keyframes of 
a robot executing a long-horizon mobile manipulation task 
that involves interactions with articulated objects.

5.5 Reconstruction of Physical Scenes

To further evaluate our system under a real-world setting, we 
conduct experiments to reconstruct physical scenes using a 
handheld Kinect v2 sensor. We obtain accurate camera poses 
with a state-of-the-art feature-based SLAM system (Mur-
Artal and Tardós, 2017) based on RGB-D streams. The 
resulting 3D volumetric panoptic map, reconstructed func-
tionally equivalent and interactive scene, and an example of 
robot interaction are shown in Fig. 11a–c, respectively. This 
result reveals a huge potential of applying the proposed sys-
tem to facilitate robot task execution in the physical world.

We further analyze scene reconstruction results using 
three typical cases that highlight the advantages and fail-
ure conditions. In case 1 (Fig. 11d), the table is occluded by 
the chair and thus is identified as two instances floating in 
the air. These two tables are determined as floor-supported, 
and their 3D bounding boxes are further refined on the basis

Fig. 9 Comparison between the ground-truth and inferred contact 
graph. (a) The annotated cggt and the cgours inferred from our panoptic 
mapping results for scene 322. (b)–(d) highlight a missing detection

reasoning on the contact graph, as shown in Fig. 8c. Never-
theless, we find that our system performs poorly or fails under 
two circumstances: (i) The incomplete object mesh has mis-
guided or no feature planes, resulting in the misalignment of 
the CAD model; (ii) The object is not supported by its bottom 
face (e.g., cabinets on the wall), resulting in the incorrectly 
reconstructed scene due to the wrong estimate of supporting 
relations. Sect. 6 provides a more in-depth discussion of the 
system limitations.

By converting the scene contact graph into a kinematic tree 
in URDF, we are able to seamlessly import the reconstructed 
functionally equivalent and interactive scene into various 
existing simulators. Practically, we also specify physical pro-
prieties (such as link mass, collision geometry, joint friction) 
in URDF to facilitate more sophisticated simulations. We 
demonstrate the usage of our reconstructed interactive scenes 
with several examples: (i) Fig. 8d shows the reconstructed 
scenes in the ROS environment, which subsequently con-
nects the reconstructed scenes and robot Task and Motion 
Planning (TAMP). Detailed planning schemes and imple-
mentations could be found in Jiao et al. (2021a, b). (ii) Fig. 8e 
demonstrates that the reconstructed scenes can be loaded into 
the VR environment (Xie et al., 2019) for interactions with
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Fig. 10 Robot executing a mobile manipulation task with multiple steps: microwaving an item (indicated by the red ball) by first retrieving it from 
the fridge (Colour figure online).

(a) (b) (c)

(d) (e) (f)

Fig. 11 Reconstructing a physical scene with a handheld RGB-D sen-
sor. (a) The panoptic segmentation and the overall mapping. (b) The 
reconstructed scene with CAD models replacing the segmented objects, 
which supports (c) a robot to simulate its Task and Motion Planning 
(TAMP). (d–f) Qualitative results of segmentation and reconstruction.

of the supporting relations. The system eventually outputs
two separate tables in the reconstructed interactive scene,
where their poses align with the oriented 3D bounding boxes 
of the partial meshes. Case 2 (Fig. 11e) shows an example
of a better reconstructed workspace. Given the incompletely
segmented table and chair point cloud, our system can cor-
rectly estimate the supporting relations and their orientations, 
replace each mesh with a similar CAD model, and finally

Our system recognizes most of the objects and properly replaces them 
with CAD models that are similar to those objects in the physical scene; 
see Case 2 and 3. A common problem is due to occlusion, which causes 
inaccurate detection, e.g., one desk is recognized as two as it is occluded 
by the chair; see Case 1 and 3.

produce a functionally equivalent and physically plausible
workspace, although the dimension of the table is not ideal
as part of the point cloud behind the chair is not detected and 
segmented correctly. Case 3 (Fig. 11f) provides a more chal-
lenging example. The fridge and microwave are segmented
and replaced by articulated CAD models, whereas the chair
is not successfully detected and is removed from the recon-
structed scene. Similar to case 1, the table is identified and
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replaced with two instances. To avoid mesh penetration, the
proximal constraints incorporated by the cg helps the CAD
replacement process to select a rounded table on the left side,
but it is not a satisfactory replacement due to the large dis-
crepancy in shapes.

6 Discussion

We now discuss in greater depth six topics related to the
presented work.

6.1 Scene Functionality

Most computer vision tasks focus on devising new method-
ologies and representations that are beneficial within the
scope of computer vision. However, this paper seeks to
address a new task of building a representational system
with the emphasis of facilitating robot activities. The core
of the system is to represent the scene functionality, one of
the key common senses governing our understanding of a
scene (Zhu et al., 2020). This goal is achieved by associ-
ating high-level cues from object semantics (e.g., whether
they can be moved, opened, or can support other interac-
tions) and low-level cues (i.e., replacing the object meshes
with CAD models, whose underlying kinematics indicates
how exactly they interact). Additional object attributes, affor-
dance, or task-dependent information can be annotated to
CAD models to depict the scenes more comprehensively. A
subsequent, interesting open question is how to quantify the
divergence between the actual scene and the reconstructed
one with CAD replacements.

6.2 Scene Representation

The contact graph cg produced by the proposed system is
a holistic, but approximate scene representation. By itself
is indeed insufficient for robot task execution where more
precious local scene representations are needed. Although
the cg does not seem directly beneficial, its importance is
two-fold when considering a robot designed to operate over
a long period of time. Firstly, the representation maintains
a global belief of the scene, helps a robot to anticipate the
effects of (sequence of) actions, and incorporates the actual
action effects back to the cg. This is essential for the robot
to forward search for a task plan over a long horizon (Kael-
bling, 2020). Secondly, given the variety of tasks a robot
may anticipate, our cg can serve as a carrier for those nec-
essary local representations that can be annotated, trained
beforehand or built online with proper perception modules.
Otherwise, different task-driven representations are isolated,
lacking a proper organization.

6.3 Task and Motion Planning (TAMP)

Existing TAMP frameworks are oftentimes too brittle to han-
dle a large variety of interactions in different environments. 
Kaelbling and Lozano-Pérez (2011) and Srivastava et al.
(2014) propose new TAMP frameworks, making planning 
long-horizon manipulation tasks possible. Still, these frame-
works focus on pick and-place tasks with carefully defined 
environmental constraints, making it difficult for complex 
indoor manipulation tasks. Garrett et al. (2020)  devise a
framework for a complex problem, which requires interac-
tions with articulated objects. Similarly, this work is still 
restricted to carefully designed environments with limited 
variety in the setup. A key factor to this problem is the lack 
of simulation environments that support various interactive 
actions (e.g., door opening, object picking) and semantic rela-
tions among objects. Crucially, it could be time-consuming 
to generate these environments manually. In comparison, our 
framework can automatically generate interactive environ-
ments using real sensory data in challenging physical world 
and it demonstrates the capability to support more complex 
TAMP studies in the future (Jiao et al., 2022; Zhang et al., 
2022).

6.4 Embodied AI

Embodied AI researches focus on learning a policy, mostly 
in simulations, that can ultimately be applied to real-world 
applications. Therefore, a significant amount of work is 
to develop simulation platforms to support learning. Our 
perspective echoes the motivation of task-oriented vision—
designing a proper vision system that better suits a given 
task (Ikeuchi and Hebert, 1992). Specifically, our work 
allows the agent to acquire a policy specific to the given envi-
ronment for the given task by capturing and representing the 
actionable information in the environment from the agent’s 
view. Thus, our work goes beyond panoptic segmentation 
and 3D reconstruction.

6.5 Suppoting Relations

Inferred supporting relations define the structure of contact 
graph. While this paper mainly concerns about stable support 
see Eq. (3), there are several other supporting configurations. 
For instance an object is hang on the wall, supported by two 
adjacent tables, placed on floor and tilted against another 
object. These types of supports are not explicitly modeled 
and may not be well handled. Our system can nevertheless 
reveal their supporting relations partially. For instances, the 
blue bottle in Fig. 1c is regarded as supported by the wall 
because no valid supporting parent is identified, and it is 
very close to the wall. Whereas in Fig. 9d, the upper cabinet 
that is supported by the wall (and possibly the ceiling as well)
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is wrongly considered as supported by the lower cabinet. In
other cases where an object is supported by multiple entities
simultaneously, only one entity would be identify as a sup-
porting parent based on overlapping area defined in Eq. (2).
For a tilted object on the floor, only the floor would be iden-
tified as the supporting object. Nevertheless, more specific
spatial relations can be modeled and incorporated into the
contact graph representation to extend the system’s capabil-
ity.

6.6 Other Limitations

The system’s performance heavily relies on 3D panoptic
segmentation of scene entities and the CAD replacement
of object meshes. Currently, our robust panoptic mapping
module utilizes open-sourced software to generate panop-
tic segmentation on RGB frames. While its development
is beyond this paper’s scope, new models and methods are
emerging in the fast-paced community, and our system is
designed to easily incorporate newer methods to improve the
mapping performance further and support subsequent pro-
cesses by reducing error propagated in each stage.

OurCAD replacement algorithmmatches and alignsCAD
models to incompletemeshes based on simple geometric fea-
tures, i.e., 3D bounding boxes and surface planes, which are
potentially fragile when the meshes are noisy and incom-
plete. In the future, we may integrate deep learning-based
methods (Avetisyan et al., 2019b; Pham et al., 2018) formore
robust and accurate CAD replacement.

The articulated CAD models are unlikely to match the
structure of real objects exactly. One potential solution is to
detect and segment object parts and estimate the kinematics
to assemble more fine-grained CAD models. The PartNet
dataset (Mo et al., 2019) and related methods (Xu et al., 2022
) provide an initial direction to start with.

In addition to the supporting relations and annotated
kinematics information, various actionable information and
object attributes may also contribute to and facilitate robot
interactions. One central question remains unanswered is
how to balance manual efforts and algorithmic efforts so that
an intelligent robot can better excel in an ever-changing envi-
ronment.

7 Conclusions and FutureWork

This paper proposes a new task of reconstructing functionally
equivalent and interactive scenes to simulate robot auton-
omy and develops a full system to demonstrate this new
perspective. Contrasting to the classic view of scene recon-
struction that focuses on the geo-information, our system
captures semantics and associated actionable information in
scene entities by (i) a novel panoptic mapping module that

reconstructs individuals objects and layouts, (ii) a geomet-
ric and physical reasoning module to replace the incomplete
objects meshes with part-based interactive CADmodels, and
(iii) a contact graph representation that facilitates physically
plausible scene reconstruction, and reflects action opportuni-
ties and action outcomes in terms of kinematic information.
In experiments, we first quantitatively demonstrate that our
system can produce high-quality panoptic segmentation, a
prerequisite for the subsequent processes.We further qualita-
tively showcase various reconstructed scenes with functional
CADmodel replacements, from dataset and real-world scan-
ning, that support fine-grained interactions in ROS and VR
environments.

In the future, we hope to improve the CAD matching
and alignment processes by introducing more robust feature
extraction and exploring learning-based methods. Another
promising future direction is to incorporate sophisticated
part-based object recognition and modeling. Together with a
CAD assembling module, it is possible to generate a CAD
model that matches a segmented object with much finer
details and reflects its functionality better. Meanwhile, more
functional and attribute information can be encoded to CAD
models to better reveal the “Dark Matter” (Zhu et al., 2020)
of a scene. Finally, we will explore the feasibility of pro-
moting the embodied AI research from navigation tasks
to fine-grained manipulation tasks using our reconstruction
framework.
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