
Sequential Manipulation Planning on Scene Graph
Ziyuan Jiao1,2 Yida Niu2 Zeyu Zhang1,2 Song-Chun Zhu1,2,3,4,5 Yixin Zhu2,3,4 Hangxin Liu2:

Abstract— We devise a 3D scene graph representation, contact
graph` (cgcgcg`), for efficient sequential manipulation planning.
Augmented with predicate-like attributes, this contact graph-
based representation abstracts scene layouts with succinct
geometric information and valid robot-scene interactions. Goal
configurations, naturally specified on contact graphs, can be
produced by a genetic algorithm with a stochastic optimization
method. A task plan is then initialized by computing the Graph
Editing Distance (GED) between the initial contact graph and
the goal configuration, which generates graph edit operations
corresponding to possible robot actions. We finalize the task
plan by imposing constraints to regulate the temporal feasibility
of graph edit operations, ensuring valid task and motion
correspondences. In a series of simulated and real experiments,
robots successfully complete complex sequential object rear-
rangement tasks that are difficult to specify using conventional
planning language like Planning Domain Definition Language
(PDDL), demonstrating high potential of planning sequential
manipulation tasks on cgcgcg`.

I. INTRODUCTION

Autonomous robots, expected to conduct a wide range
of complex sequential manipulation tasks in challenging
environments, ought to have adept planning capabilities. At
the task level, robots need to search for a feasible action se-
quence in a domain, critical for long-horizon tasks involving
multiple steps. At the motion level, robots have to produce
continuous trajectories by incorporating physical constraints.
Yet to date, thoughtfully defining the planning domain at
the task level while clearly specifying environmental states
at the motion level remains a time-consuming and error-
prone process with conventional methods. Despite excelling
in expressing symbolic states and abstract actions, STRIPS-
like representations (e.g. PDDL) struggle with continuous
states like geometric information obtained by the perception
module. This deficiency calls for alternative approaches
other than STRIPS-like planners, especially for long-horizon
manipulation tasks involving complex, nested specifications.

Recently, 3D scene graph emerges as a holistic scene
representation for scene modeling [1–13], object part mod-
eling [14, 15], kinematic relations [16, 17], robot manipula-
tions [18–22], and human-robot teaming [23–25]. In partic-
ular, Contact Graph (cg) [11] reflects the whole kinematic
relations detected in the scene using 3D vision, useful for
robot motion planning [26]. In this paper, we further identify
that such a cg can also serve as a description of tasks, thus
becoming a carrier of various information related to both task

1 UCLA Center for Vision, Cognition, Learning, and Autonomy (VCLA).
2 Beijing Institute for General Artificial Intelligence (BIGAI).
3 Institute for Artificial Intelligence, Peking University.
4 School of Artificial Intelligence, Peking University.
5 Department of Automation, Tsinghua University.
: Corresponding author.
Emails: zyjiao@ucla.edu, niuyida@bigai.ai,

zeyuzhang@ucla.edu, sczhu@stat.ucla.edu,
yixin.zhu@pku.edu.cn, liuhx@bigai.ai

box cylinder

table

box cylinder

cabinet

(a) Problems: Opening the cabinet door must precede placing an
object into the cabinet, and two objects must be placed in certain
ways such that they do not interfere subsequent operation, i.e.,
closing the door.

1

2

box cylinder

table

box cylinder

cabinet

(b) Solutions: We introduce predicate-like node attributes on cg,
called Contact Graph` (cg`), to ensure task and motion feasibility.
Fig. 1: An exemplar problem with the proposed solution
using cg`. (a) Planning a complex sequential manipulation task is
challenging for conventional task planner. Using contact graph [11],
a naive method to plan on graph (e.g., simply using Graph Editing
Distance (GED)) faces two challenges—finding the temporal se-
quence of edit operations and the exact goal configuration. (b) By
attaching extra information on nodes as attributes to constrain the
problem, the cg`-based new framework can generate a valid plan.

domains and motion constraints. Since cg can be directly
and robustly built from perceptual input [11], planning ma-
nipulation tasks on cg naturally bridges robot perception and
execution by organizing scene entities, effectively anticipates
action outcomes by updating graph, and easily validates
physical feasibility by maintaining geometric information.

Given the current environment represented as a cg, if
one could also specify the goal configuration on a cg, a
straightforward idea to generate a task plan is to adopt Graph
Editing Distance (GED). Specifically, a GED algorithm finds
a set of graph edit operations (e.g., inserting and deleting
edges) to transform a graph into another. A sequence of
feasible graph edit operations naturally corresponds to a set
of robot actions, forming a task plan. For instance, deleting
an edge and inserting a new one is analogical to picking an
object and placing it elsewhere; see Fig. 1. However, two
challenges have to be addressed.

(i) Temporal Dependency. Some graph edit operations
(or robot actions) are invalid until certain prerequisites are
met. For instance, in Fig. 1a, to represent the task of putting
the Box in the Cabinet, it is valid to delete the edge between
Table and Box and insert one below Cabinet in graph
editing. However, such an operation is infeasible neither in
task nor in motion before the cabinet door is open.

(ii) Goal Configuration. Computing GED requires a
valid graph representing the goal configuration. How do
we validate whether the goal is physically plausible and
produce alternatives when it is not? Fig. 1a depicts a scenario
where the Cabinet’s volume cannot fit the Box when the
Cylinder is placed side by side; valid solutions only exist
if one is placed on top of the another.

To tackle these two challenges, we first extend the cg to
cg` (see Fig. 1b) by augmenting predicate-like attributes
to constrain feasible operations. These attributes are task-
specific: They could be predicates/rules in conventional task
planners or entities’ geometric descriptions naturally defined
on graphs. Next, we devise a genetic algorithm for graph
structure and a stochastic optimization method for object
poses to construct the goal configuration. To solve the tem-
poral dependency problem, we develop a topological sorting
algorithm based on GED to search for a sequence of graph
edit operations on cg` constrained by nodes’ attributes,
corresponding to the robot’s task plan.

In simulation, we demonstrate the proposed graph-based
planning scheme in complex sequential manipulation tasks.
An experiment further verify the feasibility of the pro-
duced task and motion plans in physical environments.
Our contributions are three-fold: (i) Our augmented graph-
based representation cg` abstracts symbolic forms from
3D perceptual input for task planning while maintaining
geometric information for motion planning. (ii) We devise a
suite of efficient algorithms for planning complex sequential
manipulation tasks on cg`. (iii) We demonstrate the potential
of using scene graphs as a general representation to organize
multiple information sources (e.g., perception, expert knowl-
edge, predicates) and to unify scenes, tasks, and goals.

A. Related Work
Many effective representations or programming languages

have been devised for Task Planning, such as STRIPS [27],
hierarchical task network [28], temporal and-or-graph [9,
21, 24, 29], Markov decision process [30], and PDDL [31].
Among them, PDDL is a milestone that standardizes task
planning. However, PDDL requires thoughtful designs for
complex tasks, which in some cases could become compli-
cated in large planning domains. Although newer versions
of PDDL [32–34] introduced new features to consider more
complex planning domains and problems or simplify the
domain specification, it is primarily restricted to discrete
symbolic variables. Although one of the most up-to-date
PDDLs, PDDLStream [35], incorporates sampling scheme to
deal with high-dimensional and continuous variables, it still
requires sophisticated domain-specific functions to process
geometric information for related predicates during planning.

While task planning [36] or motion planning [37] alone
could be effectively solved nowadays, integrating these two
into Task and Motion Planning (TAMP) [38] remains
challenging. Researchers attempt to tackle this problem from
various angles, such as incorporating motion-level constraints
to the task planning [35, 39–41], developing interfaces that
communicate between task and motion [42], or inducing
abstracted modes from motions [43, 44]. One of the most
critical questions is how to scale up for more complex tasks

doordoorbox cylinder

table

body

door

floor

scene support/kinematic relations

attached node attributes

proximal relations nodes
cg

cg+(a) contact graph+

mutation

crossover

(c) GED

cabinets

bodydoor

box

bodydoor

box

bodydoor

box

potential support relations none

door closed door open support

containsupporting regions

���������������������

cylinder

cylinder

cylinder

Fig. 2: Scene representation. (a) An augmented contact graph cg`

incorporates additional contextual information as node attributes for
robot task planning and motion planning. (b) Goal Configuration:
Based on objects’ supporting attributes, cg` represents a goal con-
figuration that fits two objects into a cabinet. A genetic algorithm
is adopted to transform an invalid goal configuration (upper) into
a valid one (lower). (c) Temporal Dependency: After generating
a set of graph edit operations using GED, we further impose a set
of object’s status attributes as constraints, such that a temporally
corrected task plan is generated. Of note, in this scenario, none of
the cabinet’s descendants in cg` are editable when the door’s status
attribute suggesting that the cabinet door is closed.

or environments. Our work demonstrates the feasibility of
task planning on scene graph representations that naturally
represent environmental states, objects geometry, and task
goals, efficient for instantiating task plans to motion level.

B. Overview

We organize the remainder of this paper as follows. Sec-
tion II introduces the proposed graph-based representation,
cg`, and defines attributes. Section III details the method
for goal configuration synthesis, and Section IV introduces
the proposed planning schema built on top of cg` with
GED. Section V further verifies the efficacy of cg` scaling
to high-dimensional and complex environment. We conclude
the paper with discussion in Section VI.

II. GRAPH-BASED SCENE REPRESENTATION

Building on top of cg [11] representing a 3D indoor scene,
cg` is augmented as attributes with extra contextual cues for
robot planning on complex sequential manipulation tasks.

A. Contact Graph

Formally, a cg “ ppt, Eq includes (i) a scene parse
tree pt “ pV, Sq that hierarchically organizes scene entities
vi P V (e.g., objects with their articulated parts) based
on supporting relations S, and (ii) proximal relations (e.g.,
collision) E among entities represented by undirected edges.

Scene Entity Nodes V include: (i) the scene node vs,
serving as the root of pt, and (ii) a set of non-root nodes vi “

xoi, ci,Mi, Biy; each encodes a unique instance label oi, a
semantic label ci, a full geometry set of geometry primitives
Mi “ tmj

i , j “ 1, . . . , |Mi|u (a triangular mesh or a CAD
model), and an oriented 3D bounding box Bi.

(c) crossover (e) crossover (f) crossover(d) mutation(b) init

(a)

(g) optimization

1

1

2

2 3

3 4

4

5

5

Fig. 3: Synthesize plausible configuration of placing four objects
on the table. (a) Object’s supporting attributes: The box supports
others by any of its surface, the disk by its top and bottom, but
the cone cannot support others. (b)–(f) The genetic algorithm starts
from a rough configuration and searches for a plausible supporting
relation by crossover and mutation operations. (g) Objects’ poses
are further synthesized after the structure is found.

Supporting Relations sp,c P S is a directed edge between
the parent node vp and the child node vc: sp,c “ xvp, vcy,
indicating vp stably supports vc with sufficient contact areas.

Proximal Relations E introduce links among entities
in the pt. It imposes additional constraints by modeling
spatial relations between two non-supporting but physically
nearby objects: Their meshes should not penetrate each other.
Proximal relations are only assigned to geometry pairs to
enable collision checking and reduce computational costs.
The non-penetration constraints are triggered when finding
geometrically feasible object poses:

sdpmi,mjq ą 0,@pmi,mjq P M, i ‰ j (1)

where sdpmi,mjq is the signed distance between mi and
mj [45], and M is a set of all geometry primitive pairs
pmi,mjq for collision detection.

B. Contact Graph` (cg`)

Representing 3D environments by cg [11] is insufficient to
support planning due to the lack of temporal dependency and
goal configuration. Here, we augment it to cg` “ ppt, E,Aq;
see Fig. 2. While pt and E follow the aforementioned
definitions, A “ tAi, i ď |V |u is the set of task-dependent
attributes with Ai augmented to a scene entity node vi P V ,
which constrain the possible interactions with the node.

Henceforth, we consider an object rearrangement task with
two attributes: (i) a supporting attribute as indicates how
objects physically support others, and (ii) a status attribute
ac indicates a container’s accessibility. Similar to predicates
in PDDLs, the attributes of nodes in cg` can carry more
sophisticated information for other complex tasks.

Fig. 3a shows examples of supporting attributes for
different shapes. Specifically, the supporting attribute as Ď Φ
indicates if an object v can support another, where Φ “

tpϕn, tnq, n “ 1, . . . , |Φ|u is a set of surfaces extracted from
v that would possible serve as a supporting surface. ϕnp¨q

is modeled as a region Ωn with a closed boundary BΩn and
is realized as a 2D signed distance field ϕn : R2 Ñ R,
where ϕnpxq ă 0 is in the interior region Ω´

n , ϕnpxq ą 0
in the exterior region Ω`

n , and ϕnpxq “ 0 on the boundary
BΩn [46]. The value of ϕnpxq is the minimum Euclidean
distance from x to BΩn. tn P tnone,support,containu

are the supporting types:
‚ support indicates that a stable supporting relation can

be formed between vp and vc if two nodes satisfy

ϕpXcpprojKg p
com
c q ă 0 ðñ Stablepsp,cq, (2)

where ϕpXc is defined as a convex hull of an overlapping
region between a child node vc and its parent node vp’s
supporting region ϕp. projKg p

com
c projects Center of Mass

(CoM) of vc and all its descendants onto the same plane
as ϕpXc, and g is the gravitational vector; we assume
all supporting planes are perpendicular to g. ϕpXc ą 0
indicates the gravitational moment exerted on vc cannot
be canceled by its support and result in unstable sp,c.

‚ contain is a step further to support. In addition to
satisfying Eq. (2), the bounding box of vp should contain
the union of bounding boxes for vc and all its descendants:

Vol

¨

˝

¨

˝

ď

viPstpvcq

Bi

˛

‚

ď

Bp

˛

‚“ VolpBpq, (3)

where stpvcq is a subtree of pt rooted at vc.
‚ none indicates that no support or contain relations could

be established between the two nodes.
The status attribute ac P tclosed,openedu deter-

mines whether the objects descended from a node with
contain attribute (i.e., being contained) are accessible.
Ai “ pasi , a

c
i q is the assigned attribute to node vi,

wherein aci is an optional attribute only assigned to con-
tainers. The supporting relation sp,c is further augmented
with supporting region ϕp and kinematic information pp,c:
sp,c “ xvp, vc,pp,c, pϕp, tpqy. pp,c P Rnp,c is the pose vector
pointing from vp to vc, where 0 ď np,c ď 3 is the Degree of
Freedom (DoF) of vc w.r.t. vp; it could also be considered as
the plausible transformation between the parent and the child
nodes. pϕp, tpq P asp is a supporting attribute from the parent
node vp to establish the supporting relation sp,c. Of note,
a single node is possible to have more than one supporting
attribute in asi , which affords to partition working space on
the same node for more sophisticated tasks.

C. Problem Definition

We define the problem of planning on cg` in two phases.
Assuming a rough goal configuration cg`1

g is provided (e.g.,
putting the box and the cylinder into the cabinet; see
Fig. 2bc), the first phase resolves the violations of physical
constraints defined in Section II-B. To modify cg`1

g and
discover a plausible cg`, we integrate a genetic algorithm to
produce the structure of supporting relations among objects
and a stochastic optimization method to generate their poses
that satisfy physical constraints imposed on both S and E.
Section III describes goal configuration discovery.

We utilize GED to find an optimal set of graph edit
operations e1:T “ pe1, . . . , eT q to transform from the current
environment represented by cg`

0 to the goal configuration
cg`

g , along with imposed temporal dependencies between
operation pairs (e.g., opening cabinet door before placing
objects inside); see Fig. 2d. Section IV details this procedure.

III. GOAL CONFIGURATION DISCOVERY

A planning process requires a known goal configuration.
Although defining one as a cg` is relatively straightforward,
automatically finding a plausible goal configuration satisfy-
ing all physical constraints is still preferred.

Assuming a rough goal is specified (see Fig. 3b), we
aim to find a configuration incorporating proper supporting
and proximal relations (S and E) among objects. For a
cg` “ ppt, E,Aq, its configuration is represented by S, and
its configurations space S is defined as pAˆAq|V |´1 ˆRN ,
where A is the attribute space, and N is the object poses’
total DoFs. Directly sampling a configuration of cg` in S
may not always produce valid configurations. We address this
problem by using (i) a genetic algorithm to generate a pt’s
structure in pA ˆ Aq|V |´1 to discover supporting relations,
and (ii) a stochastic optimization method to optimize the
object poses in RN to obtain valid proximal relations.

A. Supporting Structure Synthesis
Genetic algorithms have demonstrated its capability

of searching complex tree structures for symbolic re-
gression [47, 48]. It consists of two basic operations,
crossover and mutation, which randomly modify the
edges and nodes over generations to increase diversity in
a population. In addition, a fitness function is defined as a
heuristic to select preferred tree structure over the population.
In this paper, we adopt a genetic algorithm for our pt
structure generation. Specifically,
‚ Crossover breaks a supporting relation sp,c and trans-

plants vc with all its descendants to another parent vp1 , as
long as vp1 is not vc’s descendant, and the new supporting
relation satisfies constraints imposed by the supporting at-
tribute asp1 . Fig. 3 illustrates some Crossover operations.

‚ Mutation first randomly selects another set of support-
ing attributes asm Ď Φm for a random node vm. Next, it
chooses a pϕmp¨q, tmq P asm for possibly better supporting
of its descendants or larger space for maintaining proximal
relations with its surrounding objects.
We design a Fitness score F as a search heuristic to speed

up the supporting synthesis:

F “
ÿ

sp,cPS

maxp
AreapϕpXcq

Areapϕpq
, θq ´ θ, (4)

where θ is a threshold of area occupation. Intuitively, no
more objects can be placed on the parent node if the
contact area between the parent node and its child node(s) is
larger than θ, and the algorithm would incline to move the
child node(s) away. Fig. 3b-f depicts an example of how a
valid supporting structure in cg` is found by the algorithm.
Next, we describe how to find a detailed configuration with
specified object poses.

B. Object Pose Synthesis

The objects’ poses in a valid cg` should satisfy Eq. (1),
i.e., not penetrating each other. With a hinge loss function

Lsd
i,j “ maxp0,´

sdpmi,mjq

dsafe
` 1q, (5)

we penalize the signed distance between objects mi and mj ,
and dsafe ą 0 is a safety distance among them. Lsd

i,j “ 0
if sdpmi,mjq ě dsafe, and Lsd

i,j ě 1 if mi and mj are
in collision. We formulate the object pose synthesis as an
optimization problem:

minimize
ÿ

i

ÿ

j

Lsd
i,j , (6)

subject to sdpmi,mjq ą 0, @pmi,mjq P M. (7)

We can further impose constraints for support or contain (i.e.,
Eqs. (2) and (3)) to this optimization process. To solve this
optimization efficiently, we design an update scheme:

µµµsd
c “

ÿ

i

ÿ

j

µµµsd
i,j , @mi P Mc, pmi,mjq P M (8)

µµµsd
i,j “

Lsd
i,j

Lsd
total

pmi
´ pmj

||pmi
´ pmj

||2
. (9)

Eq. (8) is a weighted sum over pose vectors defined in Eq. (9)
between two objects, whose weights are proportional to the
signed distance loss (Eq. (5)). This design implicitly pushes
object away to resolve collision or increases safety distance.

We further add stochasticity to avoid local minima. The
update direction of optimization is x1 “ x ` δ ¨ pµµµ ` σσσγ ¨

N p0, 1qq, where δ is the step size, x is a pose vector which
is concatenated by objects poses p for optimization, µµµ`σσσγ ¨

N p0, 1q is the proposal distribution to be sampled from, and
µµµ is the direction for the next sample. σσσγ adds noise to the
sampling direction; it decays at the rate γ P p0, 1q in each
iteration, which reduces randomness in sampling process as
iteration increases. The optimization is realized iteratively in
a breadth-first manner; see Algorithm 1. Fig. 3g shows an
example of the pose synthesis process. In Layer 1, only one
object is in the lowest level (disk) and the highest layer (grey
cone), whose poses are found quickly. The convergence is
slower in Layer 2 as the box and the red cone should not
collide with each other while staying within the disk.

Algorithm 1: Optimization of object poses over cg`

Input : pt Unoptimized scene parse tree in cg`

Output : pt˚ Optimized scene parse tree in cg`

1 for depth in 0:(MAX DEPTH(pt)-1) do
2 st Ð pt.GetSubtreeppt.root, depth ` 1q

3 for node at depth do
4 if childpnodeq ‰ H then
5 x Ð st.GetPosepchildpnodeqq

6 x˚
Ð st.ObjectPoseSynthesispxq

7 pt.SetTreePosepx˚
q

8 end
9 end

10 end
11 pt˚

Ð pt

IV. PLANNING ON cg`

We detail our planning framework based on cg` for a
single agent (e.g., a single manipulator), assuming a large
swap node vswap (e.g., a table) is available to temporarily
place objects. First, the planning framework leverages GED
to find an initial action set. Next, the action set and temporal
dependencies among actions are constructed incrementally
by reasoning about physical commonsense in terms of ac-
cessibility, stability, and collision. Finally, a valid action plan
is found through the topological sort.

A. Graph Edit Operations
The concept of GED [49] is first introduced to measure

the similarity between two graphs. It finds a set of graph
edit operations that transform a graph into another while
minimizing the total editing cost. We define GED between
the initial scene pt0 and the goal configuration ptg as

GEDppt0, ptgq “ min
pe1,...,ekqPP ppt0,ptgq

k
ÿ

i“1

cpeiq, (10)

where cpeiq is the cost function of an edit operation ei, and
P ppt0, ptgq is a set of edit operations transforming pt0 to
ptg . We consider four types of edit operations and correspond
them to robot actions:
‚ delete(sp,c) Ñ Pick(vp, vc): Pick an object vc from vp.
‚ insert(sp,c) Ñ Place(vp, vc): Place an object vc on vp.
‚ substitute(aci , opened) Ñ Open(vi): Open the door vi

such that edges among contained objects are editable.
‚ substitute(aci , closed) Ñ Close(vi): Close the door vi

such that edges among contained objects are uneditable.
We use the GED algorithm [50] to find P ppt0, ptgq

containing a set of edit operations that transforms pt0 to ptg;
edit operations are referred to as robot actions henceforth.

B. Temporal Dependency
Although the robot action set P provides elements for

planning, generating feasible plans requires valid temporal
dependencies. We build up a partially ordered set pP, Cq by
imposing temporal dependencies onto certain pairs of robot
actions C. We consider three types of dependencies.

Action Precedence: Some actions should take place
before others. For instance, an object has to be picked before
it can be placed: Pickp¨, vq ă Placep¨, vq, and the parent
object must be placed before placing others on the top of it:
Placep¨, vpq ă Placepvp, vcq.

Spatial Feasibility: Some objects should be cleared
before performing the action. For instance, re-orientating a
parent node (e.g., flip a box upside down) requires all its
descendants to be placed elsewhere (e.g., a swap node vswap):

P Y tPickpvc, vdi
q,Placepvswap, vdi

q,

Pickpvswap, vdi
q,Placepvc, vdi

q,@vdi
P childpvcqu,

where
Pickpvc, vdi

q ă Placepvp, vcq,Placepvp, vcq ă Placepvc, vdi
q.

Accessibility: It is prohibited to interact with others
inside a closed enclosure, i.e., editing the edges among all
its descendants. For instance, an Open action should precede
all related graph edit operation in P , ¨ ¨ ¨ ă Open ă Pick ă

¨ ¨ ¨ ă Place ă Close ă ¨ ¨ ¨ .

C. Topological Sort
Given pP, Cq, the task planning problem on cg` becomes

a topological sorting problem on pP, Cq to produce a valid
action sequence e1:T “ pe0, . . . , eT q. To solve it, we define
a search node N “ pP 1, C 1, e1, cg`

1

q, where P 1 Ď P is
the set of actions remains unexplored, C 1 Ď C is the set of
temporal dependencies not imposed yet, e1 the selected action
reaching current search node, and cg`

1

the graph structure
after executing e1. At the start node, P and C are given
by Section IV-B. P zC contains actions that do not have
precursors, available for exploration of neighbors.

The cg` representation is advantageous for evaluating
geometric feasibility (e.g., collision) during task planning.
Specifically, each action is parametrized by the object poses
with geometric information encoded in the nodes, enabling
collision detection during planning. Compared to PDDL
definitions, which have to checks all the pair-wise relations,
the cg` representation maintains object relations over hier-
archical structures and evaluates geometric feasibility only
on edited node and its related nodes (e.g., descendants). The
infeasibility can be resolved by (i) moving the object to the
swap node instead of directly to its goal, (ii) adding new
actions to P that move the object back to the goal, and (iii)
imposing necessary temporal constraints to clear objects that
would collide along the way. The unspecified intermediate
goals can be found by reiterating the pose synthesis algorithm
in Section III-B. Our searching pipeline is implemented
as a depth-first-search-based topological sorting algorithm,
and the object poses are optimized along with the collision
checking process during the search.

V. SIMULATIONS AND EXPERIMENTS

In simulations, we characterize the algorithms supporting
our graph-based planning framework by time complexity in
an object stacking task. We further demonstrate that our
framework can handle a complex sequential manipulation
task. In the experiment, we use a physical robot manipulator
in a setup similar to Fig. 1. The code and environment are
available at https://sites.google.com/view/planning-on-graph.

2 4 6 8 10
NO. of Objects

0

2

4

6

8

10

T
im

e
[s

]

Structure

(a)

2 4 6 8 10
NO. of Objects

0

0.2

0.4

0.6

0.8

1

1.2

T
im

e
[s

]

Poses

(b)

2 4 6 8 10
NO. of Objects

0

0.2

0.4

0.6

0.8

T
im

e
[s

]

GED Plan

(c)

2 4 6 8 10
NO. of Objects

0

10

20

30

40

50
T

im
e

[s
]

PDDLStream

(d)

(e) From left to right: Initial, intermediate, and final configurations.
Fig. 4: Stack ten objects. (a–d) Violin plots [51] (a hybrid of a
box plot and a kernel density plot) of the computing time. The
white dot represents the median, the thick gray bar in the center
the 25% to 75% quartile range, and the color shaded areas the data
distribution. (e) Corresponding simulation setup.

https://sites.google.com/view/planning-on-graph

drawer

door

door

��� ����

���

���

���

���

���

���

��� ����

��� ����

table

scene

wardrobe

purple box cup bottle

bottle brown boxpurple box
cylinder cup

cylinder cup

cylinder

cabinet

drawer

body

body

(1) ���������������
(2) ��������������
(3) ������������
(10) �
������������
(11) �
�������������
(12) �
�������������

(4) ��
	��������������������
�
��������������������
(5) ��
	����
�������
�������
�
�����
�������
������
(6) ��
	����
����
��������
�
������
�������
�������
(7) ��
	�����������
��������
�
������
��������
������
(8) ��
	����
�������
����
�
��������������
���
(9) ��
	����
������
�������
�
��������������
�����

(a) Edit operations on cg`. The purple shaded attributes indicate open/closed actions due to the accessibility criteria enforced by temporal
dependency. The green shaded edges highlight the Mutation procedure when synthesizing the structure in goal configuration—switching
supporting surfaces may better satisfy geometric constraints (e.g., (4)) or is more efficient in subsequent actions (e.g., (5)).

��� ��� ��� ��� ��� ���

��� ��� ��� ���� ���� ����
(b) Key robot actions performed during the task execution.

Fig. 5: Planning results for a long-horizon and geometrically-complex object rearrangement task. (a) The graph edit operations and
the corresponding robot actions planned by our framework successfully move everything on the Table to the Drawer. (b) Constructed
from cg`, motion planning on VKC plans action sequence, which consolidates the mobile manipulator and the manipulated objects.

A. Simulated Object Stacking

We design an object-stacking task to evaluate the time
complexity of the proposed framework, especially when
facing complex scenarios. In this task, an agent stacks,
through symbolic actions, the plates on the table from large
to small; Fig. 4e shows a typical example of this task’s initial
and goal configurations with ten plates.

While the task appears to be simple, stacking each object
requires Pick and Place that account for pair-wise con-
straints in terms of object size. Hence, its complexity quickly
increases as the number of objects increases. Our framework
needs three steps to solve this problem: (i) synthesizing
structure (i.e., supporting relations) among objects from large
to small, (ii) synthesizing specific object poses such that
the smaller object on top is within the larger one, and (iii)
producing a complete task plan by GED.

We also implement a baseline using an existing task plan-
ning method. Classic PDDLs do not contain object geometric

information and fail to handle the pair-wise constraints in
terms of object size. Here, we implement a PDDLStream, ca-
pable of considering object poses by incorporating samplers
in PDDL domains. We define two streams that (i) sample
poses of an object supported by another, and (ii) test collision
between two objects given their poses. We choose the default
adaptive algorithm provided by the PDDLStream. The goal
for both the baseline and our method is implicitly defined
as pair-wise constraints in terms of object sizes: A smaller
object must be placed above a larger object, resulting in only
one valid goal configuration. The simulation is repeated 10
times for 2, 4, 6, 8, and 10 objects with randomly initialized
object poses. The computing hardware is a Ubuntu 20.04
desktop with an AMD 5950x processor.

Figs. 4a to 4d show the simulation results. For the baseline
method, the time requirement of finding a valid solution
using PDDLStream grows exponentially (Fig. 4d) as the
number of object increases since it needs to explore all valid
combinations of actions and objects in the search space.

In comparison, the proposed framework achieves the goal
through three steps: synthesizing structure of supporting
relations (Fig. 4a), synthesizing object poses (Fig. 4b), and
planning with GED (Fig. 4c). By leveraging the cg` rep-
resentation, the genetic algorithm only explores the graph
structures that are more likely to produce a feasible solution,
which successfully reduces the search space and is especially
advantageous when the setup is more complex. Still, the
majority of time is spent on synthesizing structure due
to the large space of plausible graph structures. Overall,
the proposed method is significantly more efficient than
PDDLStream when the environments are complex (i.e.,
more than six objects), whereas PDDLStream is at similar
performance (slightly better) when the scenarios are simple
(i.e., six or fewer objects). This result indicates that the
proposed framework can scale up much better compared with
PDDLStream.

B. Simulated Complex Task

We qualitatively demonstrate that our graph-based plan-
ning scheme can handle a complex sequential manipulation
task. The task is to put Cup, Bottle, and PurpleBox on
a table inside a drawer. The challenges are two-fold: (i) Since
the BrownBox and the Cylinder are already inside the
confined Drawer, the objects must be rearranged properly
(i.e., synthesize a valid goal configuration) to fit in the tight
space. (ii) The Drawer is contained by the Cabinet, who
is also contained by Wardrobe, demanding a feasible plan
with the correct temporal dependency when reaching for the
objects inside the drawer.

Fig. 5a shows the produced task plan and depicts the
corresponding graph edit operations on the cg`. Of note,
most operations consist of two actions—Pick and Place.
The corresponding keyframes in the task execution using a
mobile manipulator (a Husky mobile base and a UR5 arm)
are visualized in Fig. 5b, whose motions are planned using a
Virtual Kinematic Chain (VKC) modeling method [26, 52].

Resulting produced using the cg` representation reflect
three advantages. First, the robot produces a temporally
correct plan by exposing three levels of containment and
closing them afterward; see Fig. 5b(1–3) and (10–12). These
nested relations are not trivial to define by predicates; they
are naturally expressed in cg` due to its hierarchy. Second,
the plan contains critical steps of rearranging objects. For
instance, move the BrownBox to the side in the Drawer
(Fig. 5b(4)) and place the Bottle flat (Fig. 5b(8)), so that
the large PurpleBox could fit in the confined space. These
capabilities demonstrate the efficacy of goal configuration
synthesis, facilitated by the geometric information encoded
in cg`. Third, the task plan is very efficient—the robot can
make the best use of the PurpleBox to support the Cup
and the Cylinder, so that they can be moved together and
minimize motion costs. Achieving this using PDDLStream
would require tedious definitions of object pair-wise relations
and complex descriptions of objects for sampling.

(a) Setup (b) Reconstruct

scene

cabinet 1

table

box 1 box 2

cabinet 2

cabinet 3

robot

(c) cg`

(d) Planned action sequence.
Fig. 6: Experiment of planning a complex sequential manipulation
task on a contact graph generated from scene reconstruction.

C. Experiment

We demonstrate cg` in organizing information from scene
reconstruction and performing manipulation planning in
physical environment. The experiment is conducted with
a Kinova Gen 3 manipulator on a table-top environment;
see setup in Fig. 6a, wherein the manipulator is tasked to
place the two boxes on the table to the second cabinet. We
reconstruct the scene [11] and replace cabinets and boxes
with CAD models (Fig. 6b). After generating contact graph
(Fig. 6c), the planned sequence on cg` is shown in Fig. 6d.
As the two objects cannot fit into the cabinet side-by-side,
the robot stacks the smaller object onto the larger one. Of
note, the robot exhibits correct temporal order of executions
for both cabinet opening and object stacking.

VI. DISCUSSION AND CONCLUSION

We tackled two challenges in manipulation planning for
complex sequential tasks on contact graph—synthesizing
plausible goal configurations and enforcing temporally cor-
rect graph edit operations. The former was addressed by a
genetic algorithm that synthesizes the supporting relations
among objects and a stochastic optimization method that
produces objects’ poses. The latter was converted to a
topological sorting problem on the set of computed graph edit
operations and imposed action temporal dependency defined
by predicate-like attributes on cg`. Our simulations and
experiments demonstrate that the proposed planning scheme
can scale up more efficiently compared with PDDLStream
and handle spatially and temporally complex tasks whose
planning domain could be hardly defined.

The proposed cg` representation and the planning scheme
are by no means a perfect solution for alleviating man-
ual efforts completely in general settings. Rather, we aim
at justifying the potential of developing planning scheme
based on scene graph, which is fruitful for advancing robot
autonomy by sharing a representation with perception and
by relieving efforts in domain specification (e.g., those in
PDDLs). A future direction of the proposed framework is to
handle uncertainty in robot perception and execution, which
by itself is a large topic [53–55]. Scene graph representations,
however, may afford new perspectives toward this problem.

REFERENCES

[1] S.-C. Zhu and D. Mumford, “A stochastic grammar of images,”
Foundations and Trends in Computer Graphics and Vision, vol. 2,
no. 4, pp. 259–362, 2007.

[2] Y. Zhao and S.-C. Zhu, “Image parsing with stochastic scene gram-
mar,” in NeurIPS, 2011.

[3] Y. Zhao and S.-C. Zhu, “Scene parsing by integrating function,
geometry and appearance models,” in CVPR, 2013.

[4] S. Qi, Y. Zhu, S. Huang, C. Jiang, and S.-C. Zhu, “Human-centric
indoor scene synthesis using stochastic grammar,” in CVPR, 2018.

[5] C. Jiang, S. Qi, Y. Zhu, S. Huang, J. Lin, L.-F. Yu, D. Terzopoulos,
and S.-C. Zhu, “Configurable 3d scene synthesis and 2d image
rendering with per-pixel ground truth using stochastic grammars,”
IJCV, vol. 126, no. 9, pp. 920–941, 2018.

[6] S. Huang, S. Qi, Y. Zhu, Y. Xiao, Y. Xu, and S.-C. Zhu, “Holistic 3d
scene parsing and reconstruction from a single rgb image,” in ECCV,
2018.

[7] Y. Chen, S. Huang, T. Yuan, S. Qi, Y. Zhu, and S.-C. Zhu, “Holis-
tic++ scene understanding: Single-view 3d holistic scene parsing and
human pose estimation with human-object interaction and physical
commonsense,” in ICCV, 2019.

[8] I. Armeni, Z.-Y. He, J. Gwak, A. R. Zamir, M. Fischer, J. Malik, and
S. Savarese, “3d scene graph: A structure for unified semantics, 3d
space, and camera,” in ICCV, 2019.

[9] S. Qi, B. Jia, S. Huang, P. Wei, and S.-C. Zhu, “A generalized earley
parser for human activity parsing and prediction,” TPAMI, vol. 43,
no. 8, pp. 2538–2554, 2020.

[10] B. Jia, Y. Chen, S. Huang, Y. Zhu, and S.-C. Zhu, “Lemma: A multi-
view dataset for learning multi-agent multi-task activities,” in ECCV,
2020.

[11] M. Han, Z. Zhang, Z. Jiao, X. Xie, Y. Zhu, S.-C. Zhu, and H. Liu,
“Reconstructing interactive 3d scenes by panoptic mapping and cad
model alignments,” in ICRA, 2021.

[12] S.-C. Wu, J. Wald, K. Tateno, N. Navab, and F. Tombari, “Scenegraph-
fusion: Incremental 3d scene graph prediction from rgb-d sequences,”
in CVPR, 2021.

[13] A. Rosinol, A. Violette, M. Abate, N. Hughes, Y. Chang, J. Shi,
A. Gupta, and L. Carlone, “Kimera: from slam to spatial perception
with 3d dynamic scene graphs,” IJRR, vol. 40, no. 12-14, pp. 1510–
1546, 2021.

[14] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang,
Z. Li, S. Savarese, M. Savva, S. Song, H. Su, et al.,
“Shapenet: An information-rich 3d model repository,” arXiv preprint
arXiv:1512.03012, 2015.

[15] Y. Weng, H. Wang, Q. Zhou, Y. Qin, Y. Duan, Q. Fan, B. Chen, H. Su,
and L. J. Guibas, “Captra: Category-level pose tracking for rigid and
articulated objects from point clouds,” in ICCV, 2021.

[16] J. Huang, H. Wang, T. Birdal, M. Sung, F. Arrigoni, S.-M. Hu, and
L. J. Guibas, “Multibodysync: Multi-body segmentation and motion
estimation via 3d scan synchronization,” in CVPR, 2021.

[17] A. Jain, R. Lioutikov, C. Chuck, and S. Niekum, “Screwnet: Category-
independent articulation model estimation from depth images using
screw theory,” in ICRA, 2021.

[18] Y. Zhu, Y. Zhao, and S.-C. Zhu, “Understanding tools: Task-oriented
object modeling, learning and recognition,” in CVPR, 2015.

[19] Y. Zhu, C. Jiang, Y. Zhao, D. Terzopoulos, and S.-C. Zhu, “Inferring
forces and learning human utilities from videos,” in CVPR, 2016.

[20] M. Edmonds, F. Gao, X. Xie, H. Liu, S. Qi, Y. Zhu, B. Rothrock, and
S.-C. Zhu, “Feeling the force: Integrating force and pose for fluent
discovery through imitation learning to open medicine bottles,” in
IROS, 2017.

[21] H. Liu, C. Zhang, Y. Zhu, C. Jiang, and S.-C. Zhu, “Mirroring without
overimitation: Learning functionally equivalent manipulation actions,”
in AAAI, 2019.

[22] Z. Zhang, Y. Zhu, and S.-C. Zhu, “Graph-based hierarchical knowl-
edge representation for robot task transfer from virtual to physical
world,” in IROS, 2020.

[23] H. Liu, Y. Zhang, W. Si, X. Xie, Y. Zhu, and S.-C. Zhu, “Interactive
robot knowledge patching using augmented reality,” in ICRA, 2018.

[24] M. Edmonds, F. Gao, H. Liu, X. Xie, S. Qi, B. Rothrock, Y. Zhu, Y. N.
Wu, H. Lu, and S.-C. Zhu, “A tale of two explanations: Enhancing
human trust by explaining robot behavior,” Science Robotics, vol. 4,
no. 37, 2019.

[25] T. Yuan, H. Liu, L. Fan, Z. Zheng, T. Gao, Y. Zhu, and S.-C. Zhu,
“Joint inference of states, robot knowledge, and human (false-)beliefs,”
in ICRA, 2020.

[26] Z. Jiao, Z. Zhang, X. Jiang, D. Han, S.-C. Zhu, Y. Zhu, and H. Liu,
“Consolidating kinematic models to promote coordinated mobile ma-
nipulations,” in IROS, 2021.

[27] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the appli-
cation of theorem proving to problem solving,” Artificial Intelligence,
vol. 2, no. 3-4, pp. 189–208, 1971.

[28] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu,
and F. Yaman, “Shop2: An htn planning system,” Journal of Artificial
Intelligence Research, vol. 20, pp. 379–404, 2003.

[29] S. Qi, B. Jia, and S.-C. Zhu, “Generalized earley parser: Bridging
symbolic grammars and sequence data for future prediction,” in ICML,
2018.

[30] R. Bellman, “A markovian decision process,” Journal of Mathematics
and Meferenechanics, vol. 6, no. 5, pp. 679–684, 1957.

[31] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,
M. Veloso, D. Weld, and D. Wilkins, “Pddl-the planning domain
definition language,” Technical Report, 1998.

[32] M. Fox and D. Long, “Pddl2.1: An extension to pddl for expressing
temporal planning domains,” Journal of Artificial Intelligence Re-
search, vol. 20, pp. 61–124, 2003.

[33] S. Edelkamp and J. Hoffmann, “Pddl2.2: The language for the classical
part of the 4th international planning competition,” Technical Report
195, University of Freiburg, 2004.

[34] A. Gerevini and D. Long, “Plan constraints and preferences in pddl3,”
tech. rep., Technical Report 2005-08-07, Department of Electronics
for Automation . . . , 2005.

[35] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Pddlstream:
Integrating symbolic planners and blackbox samplers via optimistic
adaptive planning,” in International Conference on Automated Plan-
ning and Scheduling, 2020.

[36] E. Karpas and D. Magazzeni, “Automated planning for robotics,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 3,
pp. 417–439, 2020.

[37] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[38] C. R. Garrett, R. Chitnis, R. Holladay, B. Kim, T. Silver, L. P. Kael-

bling, and T. Lozano-Pérez, “Integrated task and motion planning,”
Annual Review of Control, Robotics, and Autonomous Systems, 2021.

[39] E. Erdem, K. Haspalamutgil, C. Palaz, V. Patoglu, and T. Uras,
“Combining high-level causal reasoning with low-level geometric
reasoning and motion planning for robotic manipulation,” in ICRA,
2011.

[40] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical task and motion
planning in the now,” in ICRA, 2011.

[41] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling, “Ffrob: Leverag-
ing symbolic planning for efficient task and motion planning,” IJRR,
vol. 37, no. 1, pp. 104–136, 2018.

[42] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer,” in ICRA, 2014.

[43] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning.,” in IJCAI, 2015.

[44] M. Toussaint, K. Allen, K. A. Smith, and J. B. Tenenbaum, “Dif-
ferentiable physics and stable modes for tool-use and manipulation
planning,” in RSS, 2018.

[45] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” IJRR, vol. 33,
no. 9, pp. 1251–1270, 2014.

[46] S. Osher, R. Fedkiw, and K. Piechor, “Level set methods and dynamic
implicit surfaces,” Appl. Mech. Rev., vol. 57, no. 3, pp. B15–B15, 2004.

[47] J. R. Koza, “Genetic programming as a means for programming
computers by natural selection,” Statistics and computing, vol. 4, no. 2,
pp. 87–112, 1994.

[48] S.-M. Udrescu and M. Tegmark, “Ai feynman: A physics-inspired
method for symbolic regression,” Science Advances, vol. 6, no. 16,
2020.

[49] A. Sanfeliu and K.-S. Fu, “A distance measure between attributed rela-
tional graphs for pattern recognition,” IEEE Transactions on Systems,
Man, and Cybernetics, no. 3, pp. 353–362, 1983.

[50] Z. Abu-Aisheh, R. Raveaux, J.-Y. Ramel, and P. Martineau, “An
exact graph edit distance algorithm for solving pattern recognition
problems,” in International Conference on Pattern Recognition Appli-
cations and Methods, 2015.

[51] J. L. Hintze and R. D. Nelson, “Violin plots: a box plot-density trace
synergism,” The American Statistician, vol. 52, no. 2, pp. 181–184,
1998.

[52] Z. Jiao, Z. Zhang, W. Wang, D. Han, S.-C. Zhu, Y. Zhu, and H. Liu,
“Efficient task planning for mobile manipulation: a virtual kinematic
chain perspective,” in IROS, 2021.

[53] C. R. Garrett, C. Paxton, T. Lozano-Pérez, L. P. Kaelbling, and D. Fox,
“Online replanning in belief space for partially observable task and
motion problems,” in ICRA, 2020.

[54] R. Papallas, A. G. Cohn, and M. R. Dogar, “Online replanning with
human-in-the-loop for non-prehensile manipulation in clutter—a tra-
jectory optimization based approach,” IEEE Robotics and Automation
Letters, vol. 5, no. 4, pp. 5377–5384, 2020.

[55] J.-S. Ha, D. Driess, and M. Toussaint, “A probabilistic framework
for constrained manipulations and task and motion planning under
uncertainty,” in ICRA, 2020.

	Introduction
	Related Work
	Overview

	Graph-based Scene Representation
	Contact Graph
	
	Problem Definition

	Goal Configuration Discovery
	Supporting Structure Synthesis
	Object Pose Synthesis

	Planning on
	Graph Edit Operations
	Temporal Dependency
	Topological Sort

	Simulations and Experiments
	Simulated Object Stacking
	Simulated Complex Task
	Experiment

	Discussion and Conclusion
	References

