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Understanding Physical Effects for Effective Tool-use
Zeyu Zhang Ziyuan Jiao Weiqi Wang Yixin Zhu Song-Chun Zhu Hangxin Liu

Abstract—We present a robot learning and planning frame-
work that produces an effective tool-use strategy with the least
joint efforts, capable of handling objects different from training.
Leveraging a Finite Element Method (FEM)-based simulator that
reproduces fine-grained, continuous visual and physical effects
given observed tool-use events, the essential physical properties
contributing to the effects are identified through the proposed
Iterative Deepening Symbolic Regression (IDSR) algorithm. We
further devise an optimal control-based motion planning scheme
to integrate robot- and tool-specific kinematics and dynamics to
produce an effective trajectory that enacts the learned properties.
In simulation, we demonstrate that the proposed framework can
produce more effective tool-use strategies, drastically different
from the observed ones in two exemplar tasks.

Index Terms—Tool use; Symbolic regression; Finite element
method

I. INTRODUCTION

ARobot extends its capability to a broader range of tasks by
using tools. Unlike treating a tool as a part of the end-

effector that commonly appears in industrial settings [1, 2],
researchers have proposed various learning-based approaches
that empower more adept tool-use behaviors. However, exist-
ing learning objectives either focus on low-level motions [3, 4]
without an explicit understanding of the tasks or on higher-
level concepts with simplified motion patterns [5–7]. As a
result, robots are still far from producing situational tool-use
strategies: Given a set of objects (typical tools or canonical
objects), which one would be the best to accomplish the task?
Once an object is chosen as the tool, how to efficiently use it
given robot- and tool-specific kinematics and dynamics?

To tackle these challenges, we propose an integrated learn-
ing and planning framework wherein robots understand and
produce effective tool-use strategies by reasoning about the es-
sential physical properties that contribute to the success of the
task. Fig. 1 shows an overview of our integrated framework.
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Fig. 1: Overview of the proposed framework. (a) After observing
tool-use events, we learn the essential physical properties involved in
the processes from the effects reproduced by physics-based simula-
tion. (b) The learned results are formulated into a motion planning
scheme to produce various strategies to use an object, and the most
effective strategy with minimal joint efforts among others is selected.

Compared to prior arts in robotics literature, our framework
identifies the invariant learning objective of tool-uses at a
more fundamental level; instead of using pure vision-based
methods [8, 9], our framework focuses on the physical effects
produced by the tool and learns to recognize the essential
physical properties in accomplishing the task. Specifically, we
adopt a state-of-the-art Finite Element Method (FEM) [10]
to simulate how both visual and physical effects evolve over
time (e.g., stress, energy, contact) in a continuous manner.
A symbolic regression-based Iterative Deepening Symbolic
Regression (IDSR) algorithm is devised to trace the set of
physical properties produced by the simulator and to efficiently
identify how much each property contributes to the effect.

Next, we formulate the learned results into an optimal
control-based motion planning scheme that allows the robot
to generate various tool-use strategies whose efficiency is
evaluated by joint efforts. To ease the motion planning problem
and make the scheme more generic (i.e., handle robots with
different morphology, tools in diverse shapes, and various
ways to operate tools), we introduce a Virtual Kinematic Chain
(VKC) perspective [11, 12] that treats the tool as an additional
link of the robot and integrates their kinematic and dynamic
properties as a whole in motion planning.

In two exemplar tasks—cracking walnut and cutting car-
rot, we demonstrate that the proposed learning and planning
framework can (i) identify the essential physical properties
significant to the success of the task and (ii) produce an
effective tool-use strategy that emulates the essential properties
while minimizing joint efforts using seen and unseen objects
as tools. As a result, the proposed framework allows the robot
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to better understand the physical environment by leveraging
physics-based simulations and become more competent in
bootstrapping novel (i.e., not observed) tool-use strategies.

A. Related Work
Learning tool-use involves several cognitive and intelligent

processes, challenging even for humans. Replicating such a
skill set at the full spectrum is thus difficult, and existing
literature mainly focuses at one of three different levels. Low-
level planning and control methods track desired tool-use
trajectories with impedance control [1], alter force and motion
constraints at different stages [2], or apply learning-based
control [3, 4]; robust execution is of the central interest. At
mid-level, various intermediate representations are identified
for better understanding tool-uses, such as keypoints [6, 7],
primitive parts [13–16], and kinematic models [12, 17]. Al-
though introducing these representations facilitates learning
more diverse tool-use skills, they are still restricted to the
geometric association between shapes and task specifications.
To capture high-level concepts embedded in tool-uses, re-
searchers adopt task and motion planning [18], functional-
ity and affordance [5, 19, 20], causality [21], and common-
sense [22, 23], achieving better generalization capabilities.
Empowered by physics-based simulation, we advance this line
of work by taking all three views into account: (i) learning
related physical properties as the concepts from the tasks at
the high-level, (ii) integrating tool’s properties to robots by
adopting VKC as the intermediate representation at the mid-
level, and (iii) planning tool-use strategies via optimal control
at the low-level.

Recently, physics-based simulation significantly facilitates
various robotics tasks, e.g., Liu et al. simulate forces to
bridge human and robot’s embodiments [24], Kennedy et
al. plan liquid pouring [25], Matl et al. infer granular ma-
terials’ properties [26], Hahn et al. approximate soft objects’
motions by estimating visco-elastic parameters [27], Geilinger
et al. develop simulation framework for rigid and soft bodies
with fictional contact to promote robot locomotion [28], Li
et al. improve UAV designs [29], and Heiden et al. optimize
robot’s cutting and slicing motions [30]. Though sharing a
similar spirit, the FEM simulator adopted in the paper [10] is
designed to produce a wider range of physical properties for
robot learning instead of optimizing for dedicated applications.

B. Overview
The remainder of this paper is organized as follows. Sec-

tion II formally presents the problem definition and our opti-
mal planning framework. Section III describes the simulation
setup and the learning of physical properties. We demonstrate
our framework’s efficacy in Section IV and conclude the paper
with discussions in Section V.

II. PROBLEM DEFINITION

We define a tool-use strategy S “ pBa,Bf ,Qq by (i) an
affordance basis Ba to be grasped by the robot gripper, (ii)
a functional basis Bf to act on the target object, and (iii) a
trajectory Q directing the functional basis to move towards
the target object. Given a tool partitioned into a set of sub-
meshes tMiu, a sampling process assigns one sub-mesh as

(a) Various partitions of a hammer. The green regions denote affordance bases
Ba as potential areas for grasps, whereas the red regions denote functional
bases Bf as a candidate area to act on the target object. Surface normals
calculated at the regions’ center are the directions to grasp or act.

(b) VKCs can be constructed by consolidating the kinematic models with
dynamic information of the robot and the tool.

Fig. 2: A VKC perspective that promotes motion planning. (a)
Given a sampled bases combination (highlighted in red box) of Ba

and Bf , (b) a VKC is constructed by assigning a virtual joint between
the robot’s gripper and the Ba, and Bf becomes the new end-effector.
This VKC conversion and construction supports efficient and optimal
motion planning to produces proper tool-use trajectories by taking
both kinematic and dynamic factors into account.

Ba and another as Bf , as illustrated in Fig. 2a. The surface
normal vector n at the center of the corresponding sub-mesh
indicates the direction for the robot’s gripper to approach or
for the tool to act on the target object. Assuming the robot
can firmly grasp the tool at Ba, generating a tool-use strategy
S can be formulated as a motion planning problem that finds
a collision-free trajectory Q “ q1:T given Ba and Bf .

A. VKC for Motion Planning

The theory of body schema [31] suggests that humans can
extend the body’s representation to incorporate an external
object and treat it as part of their limb for efficient motions and
manipulations, which plays a significant role in tool-use [32].
This idea has been introduced to the robotics community to
represent robot structures and guide robot’s behaviors [33].
Recent modeling approaches adopting VKC [11, 12] provide
an effective means to model robot tool-uses: By inserting a
virtual joint between robot end-effector and tool’s Ba, the kine-
matics and dynamics of the robot and the tool are integrated,
and their motions are planned collectively, resulting in more
coordinated motion and higher planning success rate [11, 12].

We first adopt an articulated body algorithm [34] to compute
the forward dynamics analytically for the constructed VKC.
Next, the objective of the motion planning for robot tool-use
is formulated by optimal control:

min
x,u,T

ż T

0

Lpxptq, uptqqdt` φpxpT qq (1)
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Lpxptq, uptqq “ 9qJW 9q 9q ` uJWuu, (2)
φpxpT qq “ T, T P R`, (3)

where W 9q and Wu are weight matrices for joint velocities
and joint torques, u : R Ñ Rn the control input consisted of
joint torques, φpxpT qq measures the quality of the terminal
state, particularly, we penalize the total elapsed time T . x :
RÑ R2n`2m`1 is the state variable, which includes (i) joint
positions q and velocities 9q of a manipulator with n Degree
of Freedom (DoF), (ii) q and 9q of underactuated joints in a
tool, and (iii) the virtual joint at the grasp point with a total
of m DoF. Eq. (1) penalizes the weighted quadratic cost on
joint velocity and torques for the entire trajectory and the total
elapsed time.

During the motion planning, we further impose several
safety constraints:

9xptq “ fpxptq, uptqq, t P r0, T s (4)
gpxptq, uptqq “ 0, t P r0, T s (5)
xlb ď xptq ď xub, t P r0, T s (6)
ulb ď uptq ď uub, t P r0, T s (7)

where Eq. (4) is the system dynamics, Eq. (5) is a task-
dependent constraint for tool-use, Eq. (6) and Eq. (7) are safety
constraints that bound the robot workspace and control limit.

B. Goal Specification

Formally, the goal for a tool-use is expressed as:

ftaskpnTpGq,VKCq ñ gp¨q, (8)

where nTpGq is a set of physical properties that are essential to
the task, to be detailed in Section III. ftask maps these physical
properties and VKCs (as constructed in Fig. 2b) to a constraint
function g for motion planning. The intuition is for the robot to
emulate those essential physical properties in execution while
considering the robot and tool’s kinematics and dynamics.

To be more specific, let us take the walnut cracking task as
an example. Given the goal position where the contact occurs
pg , the tool should act on the target object with a velocity
vector vtool and the tool’s orientation dtool (to be detailed in
Section III-D), both represented in world frame. Eq. (9) first
finds a possible robot goal pose qg through solving inverse
kinematics to regulate the tool’s orientation when contacting
the target object:

fzpqgq ¨ vtool

||fzpqgq|| ¨ ||vtool||
“ cospdtoolq, (9)

where fz : Rn Ñ R3 finds the surface normal of Bf . Then,
the goal joint velocities are computed by:

9qg “ JJVKCpJVKCJ
J
VKCq

´1vtool, (10)

where JVKC is the geometric Jacobian from the robot’s base
frame to the tool’s functional basis at the joint position qg .
Finally, Eq. (8) can be expressed in terms of joint velocity
w.r.t. two constraint functions qg and 9qg:

gqpxptq, uptqq “xqpT q ´ qg “ 0 (11)
g 9qpxptq, uptqq “x 9qpT q ´ 9qg “ 0 (12)

(a) Comparisons between the effect produced by experiments (left) and
simulations (right) with different fracturing limits and Young’s modulus.
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(b) Fine-grained physical properties evolved in time reflect the different
physical effects among uncracked, cracked, and smashed.

Fig. 3: Examples of qualitative and quantitative results produced
by the FEM-based simulation. (a) We qualitatively choose the
parameters (in red) that best match the final effect of observed
tool-use events. (b) By adopting an FEM-based simulator, the data
collection process records physical properties evolved in time.

III. SIMULATION AND LEARNING

This section starts with the technical background of physics-
based simulation, followed by how it reproduces fine-grained
physical properties and helps understand tool-uses events.

A. Background
Solid simulation approximates objects’ physical status. It

is oftentimes formulated with the Finite Element Method
(FEM) [35], which discretizes each object into small elements
with a discrete set of sample points as the degree-of-freedoms.
Mass and momentum conservation equations are discretized
on the mesh and integrated overtime to capture the dynamics.
This paper utilizes an Incremental Potential Contact (IPC)
handling method [10, 36, 37], a state-of-the-art FEM-based
simulator, to address the difficulty of simulating non-smooth
contacts between a tool and a target object. To further support
object fracture during tool-uses, our simulator measures the
displacement of every pair of points that both connect to all
the nodes of a triangle on the mesh. If the displacement relative
to their original distance exceeds a certain strain threshold, we
mark the triangle in-between as separated.

B. Reproducing Effect
To produce similar effects in the simulation that sufficiently

match those in the physical world, some parameters governing
an object’s material property need to be appropriately set. In
particular, Young’s modulus reflects the object’s stiffness—the
stiffer the object is, the harder for it to deform or fracture, and
fracture limit determines the number and the size of segments
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a large piece will fracture into. Fig. 3a qualitatively shows how
the resulting effects vary given different Young’s modulus and
fracture limit. These two parameters are calibrated such that
the simulated effects match the observation in physical world.

We use two VIVE Trackers to capture the tool-use events.
One to track the movement of the tool (e.g., a hammer), and
another placed on the table serving as the reference point
for the target object (e.g., a walnut). Both VIVE trackers
are calibrated such that their relative poses and captured
trajectories are expressed in the same coordinate frame, with
a time step of the inverse of their sampling frequency. The
meshes of the target object and the tool are pre-scanned
using an RGB-D camera. Combining scanned meshes and
captured trajectories, we can fully reconstruct an observed
event in both space and time and further simulate the effects
of the target object both visually and physically. Examples of
keyframes of the collected data with corresponding simulated
results are shown in Fig. 1a. Fig. 3b visualizes the continuous
numerical values of some notable physical properties obtained
from simulation. Of note, capturing how the object’s status
changes and its physical properties evolve over time is highly
challenging, if not impossible, using visual information alone.

C. Learning Essential Physical Properties

We quantize the space of physical properties into three
different levels; see Fig. 1a for an illustration. (i) Action (in
blue) includes the trajectory data (position and orientation)
directly observed in tool-use events and its velocity and
acceleration calculated by finite-difference; these properties
are usually controllable by robots. (ii) Simulation (in green)
includes the physical properties estimated by the simulation
given the observed Action. (iii) Effect (in red) includes the
physical properties representing the tool-use effect. In the case
of cracking and cutting tasks, we represent the effect by the
number of pieces the target object transforms into.

Given various physical properties estimated and reproduced
by the simulation, a robot has to learn how much these
properties contribute to the success of the task and distill
knowledge at all three levels, such that it can plan its motion
in new and even unseen scenarios. To encode the connections
across all three levels of physical properties, we propose
to learn a Physical Relation Graph (PRG) representation
through symbolic regression [38, 39]. Specifically, setting the
Effect as the target variable y, the symbolic regression is tasked
to find a valid expression of y using the set of given variables
x in Simulation and Action: y “ fpxq. To prevent over-fitting,
we further balance the expression’s complexity (i.e., how many
physical properties are involved) and accuracy (i.e., how well
it expresses the target variable). As such, the relations in PRG
is sparse and only involve a small subset of the variables that
succinctly express the target variable.

Typical symbolic regression problems oftentimes have a
large search space. To tackle it, we devise an IDSR algorithm,
a variant of symbolic regression, that utilizes the hierarchical
information among physical properties at each level to prune
the searching space. Specifically, as illustrated in Fig. 4a, typ-
ical symbolic regression algorithms directly explore the entire
domain with all variables, whereas the proposed IDSR would
iteratively deepen the domain based on the hierarchy among
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Fig. 4: Learning relations among physical properties using IDSR.
(a) An example of deepening the variable domain. Since x4 is not
included in the resulted expression in the iteration 0, it is thus
removed, and its children are added to the domain in the next
iteration. (b) An example of constructing PRG. G

1

is the updated
graph after inserting the expression T into the previous graph G;
newly added nodes and edges are highlighted in red. (c) The PRG
constructed for the cutting task. (d) Inferring necessary values at the
Action level for the goal specification in planning.

them. If one variable is not selected after an iteration, the
domain will replace it with its child variables and reiterate the
algorithm, and the resulting expression will only be updated
if those child variables play a more significant role. This
process continues until all the variables from one level in the
domain are selected, or non-selected variables have no child.
Algorithm 1 outlines the procedure.

In the case of cracking a walnut (see Fig. 4b), only after
the set of relations between Effect and Simulation is explored
would the algorithm subsequently identify the set of relations
between Simulation and Action, expanding the PRG. As a
result, this algorithm design saves the memory compared to
conventional symbolic regression algorithms while preserving
the full capability of distilling the essential relations among
variables. The sub-graph highlighted in red in Fig. 1a shows
the learned PRG of cracking a walnut, wherein the edge
thicknesses are proportional to the physical properties’ con-
tribution to the effect. In another task of cutting a carrot by
half using a knife (see Fig. 4c), the IDSR algorithm identifies
the contact area governed by the orientation as an essential
physical property, since the deviation from a proper orientation
range may lead to the increment of contact area.

D. Reasoning about Goal Specification

The G identified by IDSR is still insufficient to support
the proposed planning scheme because it only deduces the
relation among those physical properties in a symbolic level,
i.e. velocity for the task of cracking a walnut, and both velocity
and orientation dtool for cutting as shown in Fig. 4bc. The
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corresponding values of vtool and/or dtool applicable for robot
planning is not determined yet.

To address this issue, we devise a sequential inference
pipeline based on learned G. As illustrated in Fig. 4d, by
modeling the values of observed effect as a Gaussian distri-
bution P pEq, a Gaussian Mixture Model (GMM) is learned
to capture the joint probability between the effect and an
identified physical property according to G, e.g. P pE,F q
for effect and contact force in Fig. 4cd, using the EM al-
gorithm [40]. Specifically, the mixture models are fitted on
the data obtained from the simulator that reproduces human
demonstrations. Next, given a desired effect, inferring specific
values of contact force is performed by drawing samples
from the distribution P pF |Eq “ P pE,F q{P pEq [41], and a
velocity in z direction vz is subsequently obtained by sampling
from P pvz|F q following the same protocol. Eventually, this
process produces the necessary values at the Action level (vtool
and dtool) as goal specifications for Eqs. (9) and (10).

IV. EXPERIMENTS

We conduct three sets of studies regarding different types
of manipulators with various settings. Using a human arm
model [42], we first validate that our planning scheme pro-
duces a feasible tool-use strategy identical to human choices;
see Section IV-A. Next, we show that our proposed framework
produces diverse tool-use strategies for Baxter arm and UR5
manipulator under different scenarios; the most effective ones
in terms of least joint effort are demonstrated in Section IV-B.
Finally, the produced strategies are fed to simulations for
robot planning and execution; see Section IV-C. Experimental
results verify that the framework indeed captures the essential
physical properties, capable of converting these learned rela-
tions into goal specification, resulting in the success of motion
planning and task completion.

In all experiments, we solve the motion planning problem
defined in Section II by CasADi [43] with the OpenOCL [44]
support. A tool-use is considered invalid if the planner cannot
produce a feasible solution. We assume the manipulators’
bases are fixed. The tool structures are scanned by an RGB-
D camera and reconstructed into watertight meshes, and the

Algorithm 1: IDSR
Data: Data samples: D. Target variable: vt. Variable set: V
Result: Best matched expression tree: T

1 Domain Ð tAllRoots(V)u while not terminate do
2 terminate Ð True;

//Symbolic regression on Domain
3 T Ð SR(D, vt, Domain);
4 diff Ð Domain z T .leaveSymbols();

//Deepening the searching domain
5 foreach v in diff do
6 if v has child then
7 Domain.add(v.children());
8 Domain.remove(v);
9 terminate Ð False;

10 end
11 end
12 end
13 return T //Return the latest T

Fig. 5: Different strategies of tool-use using an approximated
human arm model. Bas and Bf s are sampled from partitioned
regions on the hammer, and the trajectory Q is produced by the
optimal control using VKCs. The optimal strategy (in red) indeed
follows human intuition of operating a hammer. C 9q is the trajectory
smoothness cost, and Cu is the joint torque effort cost.

tool’s material is homogeneous. For fair comparisons, the
target object (e.g., walnut) is placed at the same location within
the operational space for each type of manipulator, and the
initial pose of the manipulator is identical across all trials.
In each trial, the target object has 1229 mesh vertices and is
simulated for 200 time steps. The simulation runs on a 16-core
AMD Ryzen 9 5950X machine and the average run time for
one trial is 77.08 minutes with parallelization for the linear
system computations [10]. Algorithm-wise parallelization for
FEM still remains an open problem.

A. Validating Optimal Planning by Task Efficiency
In this experiment, we evaluate whether the optimal control-

based planning scheme is effective by comparing the produced
tool-use strategies with that of human’s rational choice, which
should be regarded as near-optimal. Using the human arm
model [42] that consists of 7 DoFs (3 for shoulder, 2 for
elbow, and 2 for wrist) with corresponding arm’s physical
properties (i.e., mass, inertia) measured by human subjects,
we sample various combinations of Ba and Bf and produce
the corresponding tool-use trajectories. Fig. 5 shows initial
and final arm postures and their computed costs of replicated
human tool-uses and nine examples of alternative solutions.

Our results show that Strategy 1 is the most efficient one.
Compared with a conventional swinging action, holding ham-
merhead reduces the inertia compensated by actions, resulting
in a lower joint torque effort costs Cus in Strategy 2 and 3.
However, the trajectory smoothness costs C 9qs are higher as
a larger acceleration is required to reach the goal velocity,
making their total costs higher than the cost in Strategy 1.
Since both Strategy 4 and 5 start from a similar Ba as in
Strategy 1 followed by a swinging trajectory, their Cus are
similar to that of Strategy 1; however, their C 9qs are higher
since their Bf s do not well aligned with arm postures. Strategy
6 to 10 are some less typical examples with high Cus and
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(a) Comparison of joint effort costs in hammering between mimicking human’s strategy and the most effective one produced by our framework.

(b) Examples of various strategies to use the hammer.

Fig. 6: Generated various strategies in using a hammer. (a) Given an inferred velocity vector acting on the walnut, the best tool-use
strategy for each robot found by our framework is more efficient than simply mimicking human’s strategy, indicated by lower cost. (b) Other
strategies found by the proposed framework: low cost (in green), high cost (in yellow), and invalid with violation of constraints (in red).

C 9qs; we seldom observe these strategies in real life. Together,
these results indicate that our planning scheme can produce
an efficient tool-use trajectory with underlying rationales akin
to human tool-use behaviors, and thus we expect it to uncover
similar insights into robot tool-uses.

B. Effective Tool-Uses

After validating our optimal control-based planning scheme,
we test the efficacy of tool-use strategies derived from learned
physical properties using two different robots (a Baxter robot
and a UR5 manipulator) in two tasks (cracking and cutting).

Due to significant differences in kinematic structures, the
observed human strategy of tool-uses may not be ideal for
robots. In Fig. 6a, two robots first mimic human’s strategy.
Specifically, the robots select the observed human’s Ba and
Bf and mimic the observed trajectory Q by inverse kinematics
to operate the hammer. The resulting costs are higher than
those of the best strategy found by our framework; the ones
found by the proposed framework are dramatically different
but more effective for the robots. Fig. 6b further displays some
other tool-use strategies with low-cost (effective), high-cost
(ineffective), or are invalid by violating constraints.

Our framework is generic and generalizable to more chal-
lenging cases. It can further generate effective strategies using
unconventional daily objects. The costs of operating those
objects are ranked from low to high in Fig. 7a (Baxter)
and Fig. 7b (UR5). The experiment reveals some objects
(piler and wrench for Baxter, and axe and pan for UR5) are
surprisingly more handy for robots compared with the hammer
(indicated by the black bar). We further visualize the executed
trajectories in Fig. 7c. Of note, the same pan is more suitable
for UR5 as the cost of operating it is lower than using a

hammer but not that effective for Baxter. In comparison, the
efficiency of using the rock and the toy (Psyduck) are similar
for both robots. These results demonstrate that our learning
and planning framework enables a situational tool-use skill
for various robots.

In another task of cutting carrot, both robots do not perform
well if concerned only about the velocity as they did in walnut-
cracking; the target object will not align with the knife’s
blade properly as illustrated in Fig. 8a. By incorporating tool’s
orientation as uncovered in Fig. 4c, the robots overcome
this deficiency and produce desired effects successfully; see
Fig. 8b. Compared with the walnut-cracking task, the cutting
task poses greater challenges in selecting unseen objects as
tools since not all objects can lead to task completion; i.e., one
cannot use a hammer to successfully cut a carrot as a knife
does. Yet in Fig. 8c, the result still demonstrates the robots’
reasonable efforts in this difficult situation by choosing a sharp
edge to contact with the object, showing that our framework
successfully captures the essential physics in tool-uses and
leverages them in producing its own strategies.

C. Testing Robot Tool-use in Simulation

Finally, we evaluate how well the best strategy found by the
proposed framework (e.g., produced strategies in Fig. 6a) can
be executed in the simulator. This step is crucial as it separates
the proposed framework from purely vision-based methods.

Since no existed work can solve the proposed task, we
design a kinematic-based motion planner as a baseline that
accounts for the physical properties involved in the task. In the
case of the walnut-cracking task, the baseline needs to plan
a trajectory that moves the functional basis of the tool to the
center of the walnut while keeping its surface normal aligned
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(a) Best strategies found for the Baxter robot. (b) Best strategies found for the UR5 manipulator.

(c) Trajectories of using some of the unconventional tools: a pan, a rock, and a toy.

Fig. 7: Effective tool-uses with unseen objects for the walnut-cracking task. (a)(b) The best strategies (least cost) for ten different objects
to crack a walnut use a Baxter robot and a UR5 manipulator, respectively. (c) Examples of valid trajectories of the Baxter robot (upper) and
a UR5 manipulator (lower) using a pan (left), a piece of rock (middle), and a Psyduck toy (right).

(a) (b) (c)

Fig. 8: Tool-use strategies for cutting the carrot. (a) Robots fail to
accomplish the task without incorporating a tool’s orientation. (b) The
successful use of a knife requires incorporating orientation properties
as learned in Fig. 4c. (c) Even using an object (a hammer) unsuitable
for this task, our framework still produces an effective strategy by
finding a tool orientation that minimize contact.

with the gravity direction. Fifty trials are simulated for both
the Baxter robot and the UR5 manipulator using trajectories
produced by the baseline and the proposed framework, and the
parameters governing walnut’s fracturing properties in each
trial are set based on the values shown in Fig. 3a with a
randomness of 10% for variations.

Due to the lack of quantitative evaluation of the performance
of the walnut cracking task, we conducted a human study to
compare the results between the baseline and the proposed
framework. Ten participants were recruited online and asked
to classify the total of 200 simulated execution results into
one of the three statuses based on three instances shown
in Fig. 9a. An execution is considered successful if more
participants regard the walnut’s status as cracked. Fig. 9bc
show eight examples of the results based on the human study.
The success rates are shown in Table I, demonstrating the
necessity of understanding the physics in tool-use. Together,
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Fig. 9: Human evaluation of classifying the status of simulated
execution results. (a) After presenting three instances of walnut
being uncracked, cracked just right, and smashed, (b) participants
are asked to classify observed simulation results (eight samples for
illustration) into one of these three statuses. (c) Sample 3 to 5 are
considered successful as most participants regard them as cracked.

the results show the proposed framework indeed enables a
better understanding of complex physical events that occurred
during the tool-uses and successful productions of tool-use
behaviors for robots.

V. CONCLUSION AND DISCUSSION

We presented a learning and planning framework for robots
to understand the physics behind tool-use events and generate
tool-use strategies suitable for the robots’ own kinematics and
dynamics. A physics-based FEM simulator was developed to
generate physical properties in a continuous manner, from
which we devised an IDSR algorithm to learn the essential
properties critical to the success of the task. By formulating the
learned properties into an optimal control-based motion plan-
ning scheme, our experiments demonstrated that the proposed
framework allows robots to find tool-use strategies different
from human demonstrations when handling seen and unseen
objects, with better efficiency measured by least joint efforts.

TABLE I: Success Rate in Cracking Walnut in Simulator

Robot Type Baseline Proposed

Baxter 14% 62%
UR5 16% 52%
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While our work is conducted in simulation, our planning
scheme outputs torque commands that are possible for deploy-
ment on physical robots in the future. As grasping remains an
unsolved problem, we plan to incorporate more sophisticated
methods (e.g., [45]) to generate firm grasp configurations
on the tool, such that we can produce more realistic and
adaptive tool-uses. The reality gap is another major challenge
to realize the physical deployment of the proposed framework.
Physics-based simulation is difficult to tune or match the real
world precisely. However, it is still a powerful tool for robot
understanding and uncovering the task goal.

Acknowledgement: The authors would like to thank Dr.
Minchen Li and Dr. Chenfanfu Jiang from the UCLA Mathe-
matics Department for the simulation setup.
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