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Abstract

In this work, we present a reconfigurable data glove design to capture different modes of human hand-object interactions, which
are critical in training embodied artificial intelligence (AI) agents for fine manipulation tasks. To achieve various downstream tasks
with distinct features, our reconfigurable data glove operates in three modes sharing a unified backbone design that reconstructs
hand gestures in real time. In the tactile-sensing mode, the glove system aggregates manipulation force via customized force sensors
made from a soft and thin piezoresistive material; this design minimizes interference during complex hand movements. The virtual
reality (VR) mode enables real-time interaction in a physically plausible fashion: A caging-based approach is devised to determine
stable grasps by detecting collision events. Leveraging a state-of-the-art finite element method (FEM), the simulation mode collects
data on fine-grained 4D manipulation events comprising hand and object motions in 3D space and how the object’s physical
properties (e.g., stress and energy) change in accordance with manipulation over time. Notably, the glove system presented here is
the first to use high-fidelity simulation to investigate the unobservable physical and causal factors behind manipulation actions. In
a series of experiments, we characterize our data glove in terms of individual sensors and the overall system. More specifically, we
evaluate the system’s three modes by (i) recording hand gestures and associated forces, (ii) improving manipulation fluency in VR,
and (iii) producing realistic simulation effects of various tool uses, respectively. Based on these three modes, our reconfigurable
data glove collects and reconstructs fine-grained human grasp data in both physical and virtual environments, thereby opening up
new avenues for the learning of manipulation skills for embodied AI agents.
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1. Challenges in learning manipulation

Manipulation and grasping are among the most fundamental
topics in robotics. This classic field has been rejuvenated by the
recent boom in embodied AI, wherein an agent (e.g., a robot) is
tasked to learn by interacting with its environment. Since then,
learning-based methods have been widely applied and have el-
evated robots’ manipulation competence. Often, robots either
train on data directly obtained from sensors (e.g., object grasp-
ing from a cluster [63, 72], pick-and-place [94], object han-
dover [9], or door opening [93]) or learn from human demon-
strations (e.g., motor motion [62, 77], affordance [39, 69], task
structure [57, 65, 92], or reward functions [1, 28, 73]).

Learning meaningful manipulation has a unique prerequisite:
It must incorporate fine-grained physics to convey an under-
standing of the complex process that occurs during the inter-
action. Although we have witnessed the solid advancement of
certain embodied AI tasks (e.g., visual-language navigation),
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these successes are primarily attributed to the readily available
plain images and their annotations (pixels, segments, or bound-
ing boxes) that are directly extracted from the existing training
platforms [47, 80, 91], while physics information during the
interactions is still lacking. Similarly, although modern vision-
based sensors and motion-capture systems can collect precise
trajectory information, neither can precisely estimate physical
properties during interactions. Existing software and hardware
systems are insufficient for learning sophisticated manipulation
skills for the following three reasons:

First, understanding fine-grained manipulation or human-
object interactions requires a joint understanding of both hand
gesture1 and force [56]; distinguishing certain actions purely
based on the hand gesture is challenging, if not impossible.
For example, in the task of opening a medicine bottle that re-
quires either pushing or squeezing the lid to unlock the child-
proof mechanism, it is insufficient to differentiate the opening
actions by visual information alone, because the pushing and
squeezing actions are visually similar (or even identical) to each

1In this article, the phrase “hand gesture” is used to refer to the collective
movement of the fingers and palm, whereas “hand pose” is used to refer to the
position and orientation of the wrist.
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Figure 1: Overview of our reconfigurable data glove in three operating modes, which share a unified backbone design of an IMU network
that captures the hand gesture. (a) The tactile-sensing mode records the force exerted by the hand during manipulation. (b) The VR mode
supports stable grasping of virtual objects in VR applications and provides haptic feedback via vibration motors. Contact configurations are
conveniently logged. (c) The simulation mode incorporates state-of-the-art FEM simulation [49] to augment the grasp data with fine-grained
changes in the object’s properties.

other [13]. Reconstructing hand gestures or trajectories alone
has already been shown to be challenging, as severe hand-object
occlusion hinders the data collection reliability. To tackle this
problem, we introduce a tactile-sensing glove to jointly capture
hand gestures through a network of inertial measurement units
(IMUs) and force exerted by the hand using six customized
force sensors during manipulation. The force sensors are con-
structed from Velostat–a piezoresistive fabric with changing re-
sistance under pressures, which is soft and thin to allow natural
hand motions. Together, the force sensors provide a holistic
view of manipulation events. A preliminary version of this sys-
tem has been presented in the work of Liu et al. [56]; interested
readers can refer to the Appendix for details.

Second, contact points between hand and object play a sig-
nificant role in understanding why and how a specific grasp is
chosen. Such information is traditionally challenging to obtain
(e.g., through thermal imaging [5]). To address this challenge,
we devise a VR glove and leverage VR platforms to obtain con-
tact points. This design incorporates a caging-based approach
to determine a stable grasp of a virtual object based on the col-
lision geometry between fingers and the object. The collisions
trigger a network of vibration motors on the glove to provide
haptic feedback. The VR glove jointly collects trajectory and
contact information that is otherwise difficult to obtain physi-
cally. A preliminary version of this system has been presented

in the work of Liu et al. [58]; interested readers can refer to the
Appendix for details.

Third, much attention has been paid to collecting hand in-
formation during fine manipulation but not to the object being
manipulated or its effects caused by actions. This deficiency
prohibits the use of collected data for studying complex ma-
nipulation events. For example, consider a tool-use scenario.
A manipulation event cannot be comprehensively understood
without capturing the interplay between the human hand, the
tool being manipulated, and the action effects. As such, this
perspective demands a solution beyond the classic hand-centric
view in developing data gloves. Furthermore, since the ef-
fects caused by the manipulation actions are traditionally dif-
ficult to capture, they are often treated as a task of recog-
nizing discrete, symbolic states or attributes in computer vi-
sion [12, 60, 67], losing their intrinsic continuous nature. To
overcome these limits of traditional data gloves, we propose
to integrate a physics-based simulation using the state-of-the-
art FEM [49] to model object fluents–the time-varying states
in the event [68]–and other physical properties involved, such
as contact forces and the stress within the object. This glove
with simulation captures a human manipulation action and an-
alyzes it in four-dimensional (4D) space by including: (i) the
contact and geometric information of the hand gesture and the
object in three-dimensional (3D) space, and (ii) the transition
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and coherence between the object’s fluent changes and the ma-
nipulation events over time. To the best of our knowledge, this
is the first time such 4D data offering a holistic view of manip-
ulation events is used in this field, and its use will open up new
avenues for studying manipulations and grasping.

Sharing a unified backbone design that reconstructs hand
gestures in real-time, the proposed data glove can be easily re-
configured to (i) capture force exerted by hand using piezore-
sistive material, (ii) record contact information by grasping sta-
bly in VR, or (iii) reconstruct both visual and physical effects
during the manipulation by integrating physics-based simula-
tion. Our system extends the long history of developing data
gloves [11] and endows embodied AI agents with a deeper un-
derstanding of hand-object interactions.

This paper makes three contributions compared with prior
work [56, 58]. First, we introduce the concept of a reconfig-
urable glove-based system. The three operating modes tackle a
broader range of downstream tasks with distinct features. This
extension does not sacrifice the easy-to-replicate nature, as dif-
ferent modes share a unified backbone design. Second, a state-
of-the-art FEM-based physical simulation is integrated to aug-
ment the grasp data with simulated action effects, thereby pro-
viding new opportunities for studying hand-object interactions
and complex manipulation events. Third, we demonstrate that
the data collected by our glove-based system–either virtually or
physically–is effective for learning in a series of case studies.

1.1. Related work

Hand gesture sensing Recording finger joints’ movements
is the core of hand gesture sensing. Various types of hardware
have been adopted to acquire hand gestures. Although curva-
ture/flex sensors [36, 42], liquid metal [71], a stretchable strain
sensor [84], and triboelectric material [87] are among proven
approaches, these can only measure unidirectional bending an-
gles. Hence, they are less efficient for recording a hand’s
metacarpophalangeal (MCP) joints with two degrees of free-
dom (DoFs) for finger abduction and adduction. In addition, by
wrapping around bending finger joints, these instruments sac-
rifice natural hand movements due to their large footprint and
rigidness. In comparison, IMUs can measure one phalanx’s 6-
DoF pose, interfere less with joint motions, and perform more
consistently over an extended period of time. As a result, adopt-
ing IMUs in data gloves has prevailed in modern design, includ-
ing IMUs channeled by a Zigbee network [82], a circuit board
with a 6-DoF accelerometer/gyroscope and a 3-DoF magne-
tometer placed on each of the 15 phalanxes [41], and a pop-
ulation of IMUs connected through flexible cables [24]. Often,
the raw sensory information requires further filtering [76] and
estimation [40, 41, 53].

Force sensing Sensing the forces exerted by a hand dur-
ing manipulation has attracted growing research attention and
requires a more integrated glove-based system. Here, we
highlight some signature designs. An elastomer sensor with
embedded liquid-metal material [19] was able to sense force
across a large area (e.g., the palm) and estimate joint move-
ments by measuring skin strain. FlexiForce sensors can acquire

hand forces [18], while an optical-based motion-capture sys-
tem tracks hand gestures. Forces and gestures can also be es-
timated using 9-DoF IMUs without additional hardware [64],
although the force estimation is crude. Other notable designs
involve specialized hardware, including force-sensitive resis-
tors [54] and a specific tactile sensor for fingertips [2]. Re-
cently, soft films made from piezoresistive materials whose re-
sistance changes under pressing forces (e.g., Velostat) have be-
come increasingly popular in robotic applications; this type of
material permits force sensing without constraining the robots’
or human hand’s motions [30, 61, 66, 74].

1.2. Overview: Three modes of the reconfigurable data glove
To tackle the aforementioned challenges and fill in the gap

in the literature, we devised a reconfigurable data glove that
is capable of operating in three modes for various downstream
tasks with distinct features and goals.

Tactile-sensing mode We start with a glove design using
an IMU configuration [41] to reconstruct hand gestures. Our
system’s software and hardware designs are publicly available
for easy replication. A customized force sensor made from
Velostat–a soft fabric whose resistance changes under differ-
ent pressures–is adopted to acquire the force distributions over
large areas of the hand without constraining natural hand mo-
tions. Fig. 1a [49, 56, 58] summarizes this tactile-sensing glove
design.

VR mode By reconstructing virtual grasps in VR, this
mode provides supplementary contact information (e.g., con-
tact points on an object) during manipulation actions. In con-
trast to the dominating symbolic grasp methods that directly at-
tach the virtual object to the virtual hand when a grasp event is
triggered [3], our glove-based system enables a natural and re-
alistic grasp experience with a fine-grained hand gesture recon-
struction and force estimated at specific contact points; a sym-
bolic grasp would cause finger penetrations or non-contacting
(e.g., see examples in Fig. 6b), since the attachments between
the hand and object are predefined. Although collecting grasp-
related data in VR is more convenient and economical than
other specialized data-acquisition pipelines, the lack of direct
contact between the hand and physical objects inevitably leads
to less natural interactions. Thus, providing haptic feedback is
critical to compensate for this drawback. We use vibration mo-
tors to provide generic haptic feedback to each finger, thereby
increasing the realism of grasping in VR. Fig. 1b [49, 56, 58]
summarizes the VR glove design.

Simulation mode Physics-based simulations emulate a sys-
tem’s precise changes over time, thus opening up new direc-
tions for robot learning[7], including learning robot naviga-
tion [91], bridging human and robot embodiments in learn-
ing from demonstration [57], soft robot locomotion [25], liquid
pouring [37], and robot cutting [23]. In a similar vein, simu-
lating how an object’s fluent changes as the result of a given
manipulation action provides a new perspective on hand-object
interactions. In this article, we adopt a state-of-the-art FEM
simulator [49] to emulate the causes and effects of manipulation
events. As shown in Fig. 1c [49, 56, 58], by integrating physi-
cal data collected by the data glove with simulated effects, our
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system reconstructs a new type of 4D manipulation data with
high-fidelity visual and physical properties on a large scale. We
believe that this new type of data can significantly impact how
manipulation datasets are collected in the future and can assist
in a wide range of manipulation tasks in robot learning.

1.3. Structure of this article

The remainder of this article is organized as follows. We
start with a unified design for hand gesture sensing inSection 2.
With different goals, the tactile-sensing mode [56] and the VR
mode [58] are presented in Section 3 and Section 4, respec-
tively. A new state-of-the-art, physics-based simulation using
FEM [89] is integrated in Section 5 to collect 4D manipulation
data, which is the very first in the field to achieve such high fi-
delity, to the best of our knowledge. We evaluate our system in
three modes in Section 6 and conclude the paper in Section 8.

2. A unified backbone design for gesture sensing

This section introduces the IMU setup for capturing hand
gestures in Section 2.1. As this setup is shared among all three
modes of the proposed reconfigurable data glove, we further
evaluate the IMU performance in Section 2.2.

2.1. Hand gesture reconstruction

IMU specification Fifteen Bosch BNO055 9-DoF IMUs are
deployed for hand gesture sensing. One IMU is mounted to the
palm, two IMUs to the thumb’s distal and intermediate pha-
langes, and the remaining 12 are placed on the phalanxes of the
other four fingers. Each IMU includes a 16-bit triaxial gyro-
scope, a 12-bit triaxial accelerometer, and a triaxial geomag-
netometer. This IMU is integrated with a built-in proprietary
sensor fusion algorithm running on a 32-bit microcontroller,
yielding each phalanx’s pose in terms of a quaternion. The geo-
magnetometer acquires an IMU’s reference frame to the Earth’s
magnetic field, supporting the pose calibration protocol (intro-
duced later). The small footprint of the BNO055 (5 cm×4.5 cm)
allows easy attachment to the glove and minimizes interference
with natural hand motions. A pair of TCA9548A I2C multi-
plexers is used for networking the 15 IMUs and connecting
them to the I2C bus interfaces on a Raspberry Pi 2 Model B
board (henceforth RPi for brevity); RPi acts as the master con-
troller for the entire glove system.

Hand forward kinematics A human hand has about 20
DoFs: both the proximal interphalangeal (PIP) joint and the dis-
tal interphalangeal (DIP) joint have one DoF, whereas an MCP
joint has two. Based on this anatomical structure, we model
each finger by a 4-DoF kinematic chain whose base frame is
the palm and the end-effector frame is the distal phalanx. The
thumb is modeled as a 3-DoF kinematic chain consisting of a
DIP joint and an MCP joint.

After obtaining a joint’s rotational angle using two consec-
utive IMUs, the position and orientation of each phalanx can
be computed by forward kinematics. Fig. 2 [56] shows an ex-
ample of the index finger’s kinematic chain and the attached
frame. Frame 1 is assigned to the palm, and Frames 2, 3, and

Figure 2: The kinematic chain of the index finger with coordinate
frames attached. Reproduced from Ref. [56] with permission.

4 are assigned to the proximal, middle, and distal phalanx, re-
spectively. The proximal, middle, and distal phalanx lengths
are respectively denoted by l1, l2, and l3, The flexion and ex-
tension angles of the MCP, PIP, and DIP joints are denoted as
θ1, θ2, and θ3, respectively. In addition, the MCP joint has an
abduction and adduction angle denoted as β. dx and dy are the
offsets in the x and y directions between the palm’s center and
the MCP joint. Table 1 derives the Denavit-Hartenberg (D-H)
parameters for each reference frame, wherein a general homo-
geneous transformation matrix T from frames i − 1 to i can be
given by the following:

i−1
i T =


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di

sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 , (1)

where cθi and sθi denote cos (θi) and sin (θi), respectively.

Table 1: Denavit-Hartenberg parameters of a finger.

Link ID αi−1 ai−1 θi di

1 0 0 β 0
2 π/2 l1 θ1 0
3 0 l2 θ2 0
4 0 l3 θ3 0

Table 2 lists the homogeneous transformation matrices of
each phalanx, which can be used to express each phalanx’s pose
in the palm’s reference frame in the cartesian space. The for-
ward kinematics model keeps better track of the sensed hand
gesture by reducing the inconsistency due to IMU fabrication
error and anatomical variations among the users’ hands.

Table 2: Concatenation of transformation matrices.

Phalanx Transformation

Proximal 0
1T 1

2 T
Middle/Distal for thumb 0

1T 1
2 T 2

3 T
Distal 0

1T 1
2 T 2

3 T 3
4 T

4
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Figure 3: The IMU calibration protocol. The protocol starts by hold-
ing the hand flat, as shown by the virtual hand model. The relative
pose between the world frame and the IMU’s local coordinate system
is recorded. The inverse of the recorded relative pose corrects the IMU
data. Reproduced from Ref. [58] with permission.

Joint limits We adopt a set of commonly used inequal-
ity constraints [55] to limit the motion ranges of the finger
joints, thereby eliminating unnatural hand gestures due to sen-
sor noise:

MCP joint :

0◦ ≤ θ1 ≤ 90◦

−15◦ ≤ β ≤ 15◦

PIP joint : 0◦ ≤ θ2 ≤ 110◦

DIP joint : 0◦ ≤ θ3 ≤ 90◦

(2)

Pose calibration Inertial sensors such as IMUs suffer from
a common problem of drifting, which causes an accumulation
of errors during operations. To overcome this issue, we intro-
duce an IMU calibration protocol. When the sensed hand ges-
ture degrades significantly, the user wearing the glove can hold
the hand flat and maintain this gesture (see Fig. 3) to initiate
calibration; the system records the relative pose between the
IMU and world frames. The orientation data measured by the
IMUs are multiplied by the inverse of this relative pose to can-
cel out the differences, thus eliminating accumulated errors due
to drifting. This routine can be performed conveniently when
experiencing unreliable hand gesture sensing results.

2.2. IMU evaluation

We evaluated an individual IMU’s bias and variance during
rotations. Furthermore, we examined how accurately two artic-
ulated IMUs can reconstruct a static angle, indicating the per-
formance of an atomic element in sensing the finger joint angle.

Evaluations of a single IMU As the reliability of the ges-
ture sensing primarily depends on the IMU performance, it is
crucial to investigate the IMU’s bias and variance. More specif-
ically, we rotated an IMU using a precise stepper motor con-
trolled by an Arduino microcontroller. Four rotation angles–
90◦, 180◦, 270◦, and 360◦–were executed 20 times each at a
constant angular velocity of 60 rotations per minute (RPMs).
We did not test for a rotation angle exceeding 360◦, as this
is beyond the fingers’ motion range. Fig. 4a summarizes the
mean and the standard deviation of the measured angular error.
Overall, the IMU performed consistently with a bias between
2◦ and 3◦ and a ±1.7◦ standard deviation, suggesting that post-
processing could effectively reduce the sensor bias.
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(b) Error in recovering a fixed angle with two articulated IMUs.

(c) Schematic of articulated IMUs. (d) Physical setup.

Figure 4: Evaluations of IMU performance. The measurement error
is summarized as the mean and standard deviation of (a) a single IMU
and (b) two articulated IMUs under different settings. The red horizon-
tal lines, blue boxes, and whiskers indicate the median error, the 25th

and 75th percentiles, and the range of data points not considered to be
outliers, respectively. A schematic of the experimental setup for eval-
uating the angle reconstruction with two articulated IMUs is shown in
(c), and its physical setup with a 90◦ bending angle is shown in (d).
Reproduced from Ref. [56] with permission.

Evaluations of articulated IMUs Evaluating IMU perfor-
mance on whole-hand gesture sensing is difficult due to the
lack of ground truth. As a compromise, we 3D printed four
rigid bends with angles of 0◦ 45◦, 90◦, and 135◦ to emulate four
specific states of finger bending, which evenly divided a finger
joint’s motion range as defined in Eq. (2). Using two IMUs to
construct a bend, assuming it to be a revolute joint, we tested the
accuracy of the reconstructed joint angle by computing the rel-
ative poses between the two IMUs. Fig. 4c shows a schematic
of this experimental setup, and Fig. 4d shows the physical setup
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with a 90◦ bending angle. During the test, one IMU was placed
2 cm behind the bend, and another was placed 1 cm ahead, sim-
ulating the IMUs attached to a proximal phalanx and a middle
phalanx, respectively. We repeated the test 20 times for each
rigid bend. Fig. 4b shows the errors of the estimated joint an-
gles. As the bending angle increased, the reconstruction errors
increased from 4◦ to about 6◦, with a slightly expanded con-
fidence interval. Overall, the errors were still reasonable, al-
though the IMUs tended to underperform as the bending angle
increased. Through combination with the pose calibration pro-
tocol, these errors can be better counterbalanced, and the uti-
lized IMU network can reliably support the collection of grasp-
ing data (see Section 6 for various case studies).

3. Tactile-sensing mode

Our reconfigurable data glove can be easily configured to the
tactile-sensing mode, which shares the unified backbone de-
sign described in Section 2. The tactile-sensing mode measures
the distribution of forces exerted by the hand during complex
hand-object interactions. We start by describing the force sen-
sor specifications in Section 3.1, which is followed by details
of prototyping in Section 3.2. We conclude this section with a
qualitative evaluation in Section 3.3.

3.1. Force sensor

We adopt a network of force sensors made from Velostat to
provide force sensing in this tactile-sensing mode. Fig. 5a illus-
trates the Velostat force sensor’s multi-layer structure. A taxel
(i.e., a single-point force-sensing unit) is composed of one in-
ner layer of Velostat (2 cm × 2 cm) and two middle layers of
conductive fabric, stitched together by conductive thread and
enclosed by two outer layers of insulated fabric. A force-sensor
pad consisting of 2 taxels is placed on each finger, and a sensor
grid with 4 cm × 4 cm taxels is placed on the palm. Lead wires
to the pads and grid are braided into the conductive thread.

As the Velostat’s resistance changes with different pressing
forces, the measured voltage across a taxel can be regarded as
the force reading at that region. To acquire the voltage read-
ings, we connect these Velostat force-sensing taxels in paral-
lel via analog multiplexers controlled by the RPi’s GPIO and
output to its SPI-enabled ADS1256 ADC. More specifically,
two 74HC4051 multiplexers are used for the palm grid, and a
CD74HC4067 multiplexer is used for all the finger pads. A
voltage divider circuit, shown in Fig. 5b, is constructed by con-
necting a 200Ω resistor between the RPi’s ADC input channel
and the multiplexers.

We now characterize the sensor’s force-voltage relation [45].
A total of 13 standard weights (0.1 kg to 1.0 kg with 0.1 kg in-
crements, 1.2 kg, 1.5 kg, and 2.0 kg) were applied to a taxel, and
the associated voltages across that taxel were measured. The
calibration circuit was the same as that in Fig. 5b, except that
only the taxel of interest was connected. The weights in kilo-
grams were converted to forces in Newtons with a gravitational
acceleration g = 10 m/s2. We first tested the power law [45] for
characterizing the force-voltage relation of a taxel. The result

(a) Velostat sensor construction (b) Velostat sensor circuit
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Figure 5: Characterization of the Velostat force sensor. (a) The
multi-layer structure of a Velostat force sensor. (b) The circuit layout
for force data acquisition. (c) The force-voltage relation of one sensing
taxel. Instead of using a power law, our choice of a logarithmic law fits
the data better. (d) A grasp of the half-full bottle. (e) Force responses
of grasping empty, half-full, and full bottles, respectively. Reproduced
from Ref. [56] with permission.

was F = −1.067V−0.4798 + 3.244 with R2 = 0.9704, where F is
the applied force, and V is the output voltage. However, we fur-
ther tested a logarithmic law, resulting in a better force-voltage
relation: F = 0.569 log (44.98V) with a higher R2 = 0.9902.
Hence, we adopted the logarithmic fit to establish a correspon-
dence between the voltage reading across a taxel and the force
the taxel is subjected to. Fig. 5c compares these two fits.

3.2. Prototyping

Fig. 1a [49, 56, 58] displays a prototype of the tactile-sensing
glove. The capability of force sensing is accomplished by plac-
ing one Velostat force-sensing pad on each finger (one taxel in
the proximal area and another in the distal area) and a single
4 cm × 4 cm Velostat force-sensing grid over the glove’s palm
region. Based on the established force-voltage relation, these
taxels collectively measure the distribution of forces exerted by
the hand. Meanwhile, the 15 IMUs capture the hand gestures in

6



motion. These components are all connected to the RPi, which
can be remotely accessed to visualize and subsequently utilize
the collected gesture and force data in a local workstation, pro-
viding a neat solution to collect human manipulation data.

By measuring the voltage and current across each compo-
nent, we investigated the power consumption of the prototype.
Table 3 reports the peak power of each component of interest
as the product of its voltage and current in a 10-min operation.
The total power consumption was 2.72 W, which can be easily
powered by a conventional Li-Po battery, offering an untethered
user experience and natural interactions during data collection.

Table 3: Power consumption of the tactile-sensing glove.

Component gesture sensing force sensing computing
total

15 IMUs 6 Velostat RPI

Power (W) 0.60 0.02 2.15 2.72

3.3. Qualitative evaluation

We evaluated the performance of the tactile-sensing glove in
differentiating among low, medium, and high forces by grasp-
ing a water bottle in three states, empty, half-full, and full,
whose weights were 0.13 kg, 0.46 kg, and 0.75 kg, respectively.
The participants were asked to perform the grasps naturally and
succinctly–exerting a force just enough to prevent the bottle
from slipping out of the hand; Fig. 5d shows such an instance.
Ten grasps were performed for each bottle state. To simplify the
analysis, the force in the palm was the average of all 16 force
readings of the palm grid, and the force in each finger was the
average reading of the corresponding finger pads. Fig. 5e shows
the recorded forces exerted by different hand regions.

4. VR mode

Since the different modes of our data glove share a unified
backbone design, reconfiguring the glove to the VR mode in or-
der to obtain contact points during interactions can be achieved
with only three steps. First, given the sensed hand gestures ob-
tained by the shared backbone, we need to construct a virtual
hand model for interactions (see Section 4.1). Next, we must
develop an approach to achieve a stable grasp of virtual objects
(see Section 4.2). Finally, grasping objects in VR introduces
new difficulty without a tangible object being physically ma-
nipulated; we leverage haptic feedback to address this problem
in Section 4.3. We conclude this section with an evaluation in
Section 4.4.

4.1. Virtual hand model

Generating a stable grasp is the prerequisite for obtaining
contact points during interactions. Existing vision-based hand
gesture sensing solutions, including commercial projects such
as LeapMotion [83] and RealSense [29], struggle with stable
grasps due to occlusions, sensor noises, and a limited field of

(a) LeapMotion (b) Oculus Touch (c) Ours

Figure 6: A comparison of grasp among (a) a LeapMotion sensor,
(b) an Oculus Touch controller, and (c) our reconfigurable glove
system in the VR mode. The grasp in (a) is unstable, as reflected
by the motion blur, due to occlusion in the vision-based hand gesture
sensing approach. While (b) affords a form of “stable” grasp (i.e., it
removes the gravity from the cup) by directly attaching the object to
the hand, this approach is unnatural, with minimal realism. It does
not reflect the actual contact between a hand and an object, and some-
times the hand even fails to come into contact with the object. (c) The
proposed reconfigurable glove in VR mode offers a realistic and stable
grasp, which is crucial for obtaining contact points during interactions.
Reproduced from Ref. [58] with permission.
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IMU Raw Data

Figure 7: Structure of the virtual hand model. Each phalanx is mod-
eled by a small cylinder whose dimensions are measured by a partici-
pant. The pose of each phalanx is reconstructed from the data read by
the IMUs. The Vive tracker provides direct tracking of the hand pose.
Reproduced from Ref. [58] with permission.

view (FoV); interested readers can refer to Fig. 6a for a com-
parison in a typical scenario. In comparison, existing VR con-
trollers adopt an alternative approach–the virtual objects are di-
rectly attached to the virtual hand when a grasp event is trig-
gered. As illustrated in Fig. 6b, the resulting experience has
minimal realism and cannot reflect the actual contact config-
uration. The above limitations motivate us to realize a stable
virtual grasp by developing a caging-based approach that is ca-
pable of real-time computation while offering sufficient realism;
an example is provided in Fig. 6c.

Thanks to the reconfigurable nature of the glove, creating a
virtual hand model in VR is simply the reiteration of the hand
gesture-sensing module described in Section 2; Fig. 7 shows the
structure of the virtual hand. More specifically, the hand ges-
tures in the local frames are given by the IMUs, and a Vive
tracker with HTC Lighthouse provides the precise position-
ing of the hand in a global coordinate, computed by the time-
difference-of-arrival.

4.2. Stable grasps

Methods for realizing a virtual grasp in VR can be roughly
categorized into two streams, with their unique pros and cons.
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(a) (b)
Figure 8: Detect stable grasps based on collisions. (a) When the geo-
metric center (green dashed circle) of all the collision points (red balls)
overlaps with the object (yellow cylinder), the object is considered to
be stably grasped and will move along with the hand. (b) Various sta-
ble grasps of a small green cylinder. Reproduced from Ref. [58] with
permission.

One approach is to use a physics-based simulation with col-
lision detection to support realistic manipulations by simulat-
ing the contact between a soft hand and a virtual object made
from varied materials. Despite its high fidelity, this approach
often demands a significant amount of computation, making it
difficult–if not impossible–to use in real time. Alternatively,
symbolic-based and rule-based grasps are popular approaches.
A grasp or release is triggered based on a set of predefined rules
when specific conditions are satisfied. This approach is compu-
tationally efficient but provides minimal realism.

Our configurable glove-based system must balance the above
two factors to obtain contact points during interactions. It must
provide a more natural interaction than those of rule-based
methods, such that the contact points obtained on the objects
are relatively accurate, while ensuring more effective compu-
tation than high-fidelity physics-based simulations, such that it
can be achieved in real time.

In this work, we devise a caging-based stable grasp algo-
rithm, which can be summarized as follows. First, the algorithm
detects all collisions between the hands and objects e.g., the red
areas in Fig. 8b). Next, the algorithm computes the geomet-
ric center of all collision points between the hands and objects
and checks whether this center is within the object. Supposing
that the above situation holds (see Fig. 8a), we consider this ob-
ject to be “caged”; thus, it can be stably grasped. The objects’
physical properties are turned off, allowing them to move along
with the hand. Otherwise, only standard collisions are triggered
between the hand and object. Finally, the grasped object is re-
leased when the collision event ends or the geometric center of
the collisions is outside the object. This process ensures that a
grasp only starts after a caging is formed, offering a more natu-
ral manipulation experience with higher realism than rule-based
grasps.

4.3. Haptic feedback

By default, the participants have no way to feel whether or
not their virtual hands are in contact with the virtual objects
while operating the glove in VR mode due to the lack of haptic
feedback, which prevents they from manipulating objects nat-
urally. To fill this gap, the VR mode implements a network
of shaftless vibration motors that are triggered when the corre-
sponding virtual phalanxes collide with the virtual object; this

(a) (b) (c) (d)
Figure 9: Various grasp results for four virtual objects: (a) a mug,
(b) a tennis racket, (c) a bowl, and (d) a goose toy. The top and bottom
rows show the approach and release of the target objects, respectively.
Reproduced from Ref. [58] with permission.

offers an effective means of providing each finger with vibra-
tional haptic feedback in the physical world that corresponds
to the contact feedback that the participants should receive in
VR. Connected to a 74HC4051 analog multiplexer and con-
trolled by the RPi’s GPIO, these small (10 mm × 2 mm) and
lightweight (0.8 g) vibration motors provide 14, 500 RPM with
a 3 V input voltage. Once a finger touches the virtual object, the
vibration motors located at that region of the glove are activated
to provide continuous feedback. When the hand forms a stable
grasp, all motors are powered up, so that the user can maintain
the current hand gesture to hold the object.

4.4. Qualitative evaluation

We conducted a case study wherein the participants were
asked to wear the VR glove and grasp four virtual objects with
different shapes and functions, including a mug, a tennis racket,
a bowl, and a goose toy (see Fig. 9). These four objects were
selected because (i) they are everyday objects with a large vari-
ation in their geometry, providing a more comprehensive as-
sessment of the virtual grasp; and (ii) each of the four objects
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can be grasped in different manners based on their functions,
covering more grasp types [16, 59]. We started by testing dif-
ferent ways of interacting with virtual objects, such as grasping
a mug by either the handle or the rim. Such diverse interactions
afforded a natural experience by integrating unconstrained fine-
grained gestures, which is difficult for existing platforms (e.g.,
LeapMotion). In comparison, our reconfigurable glove in VR
mode successfully balanced the naturalness of the interactions
with the stability of the grasp, providing a better realism in VR,
which was close to how objects are manipulated in the physical
world.

Notably, the reconfigurable glove in VR mode was able to
track hand gestures and maintain a stable grasp even when the
hand was outside the participant’s FoV, thus offering a signif-
icant advantage compared with vision-based approaches (e.g.,
the LeapMotion sensor). In a comparative study in which the
participant’s hand could be outside of the FoV, the performance
using the VR glove significantly surpassed that of LeapMo-
tion (see Table 4), thereby demonstrating the efficacy of the VR
glove hardware, the caging-based grasp approach, and the hap-
tic feedback.

Table 4: Success rates of grasping and moving four different ob-
jects using the VR glove (G) and the LeapMotion sensor (L).

task setup mug racket mug racket

grasp
L 80% 13% 27% 67%
G 100% 100% 100% 93%

move
L 33% 7% 0% 47%
G 100% 93% 93% 87%

5. Simulation mode

A manipulation event consists of both hand information and
object information. Most prior work has focused on the for-
mer without paying much attention to the latter. In fact, objects
may be occluded or may even change significantly in shape as
a result of a manipulation event, such as through deformation
or cracking. Such information is essential in understanding the
manipulation event, as it reflects the goals. However, existing
solutions, even those with specialized sensors, fall short in han-
dling this scenario, so a solution beyond the conventional scope
of data gloves is called for.

To tackle this challenge, we integrate a state-of-the-art FEM
simulator [49] to reconstruct the physical effects of an object,
in numeric terms, during the manipulation. Given the trajectory
data obtained by the proposed glove-based system, both phys-
ical and virtual properties and how they evolve over time are
simulated and rendered, providing a new dimension for under-
standing complex manipulation events.

5.1. Simulation method
We start with a brief background of solid simulation. Solid

simulation is often conducted with FEM [101], which dis-
cretizes each object into small elements with a discrete set of
sample points as the DoFs. Then, mass and momentum conser-
vation equations are discretized on the mesh and integrated over

time to capture the dynamics, in which elasticity and contact are
the most essential yet most challenging components. Elasticity
is the ability of an object to retain its rest shape under external
impulses or forces, whereas contact describes the intersection-
free constraints on an object’s motion trajectory. However, elas-
ticity is nonlinear and non-convex, and contact is non-smooth,
both of which can pose significant difficulties to traditional
solid simulators based on numerical methods [48]. Recently,
Li et al. [49] proposed incremental potential contact (IPC), a
robust and accurate contact-handling method for FEM simu-
lations [8, 15, 17, 44, 51]; it formulates the non-smooth con-
tact condition into smooth approximate barrier potentials so that
the non-smooth contact condition can be solved simultaneously
with electrodynamics using a line search method [50, 70, 85]
with a global convergence guarantee. As it is able to consis-
tently produce high-quality results without numerical instability
issues, IPC makes it possible to conveniently simulate complex
manipulation events, even with extremely large deformations.

We further extend the original IPC to support object fracture
by measuring the displacement of every pair of points; that is,
we go through all pairs of points for a triangle and all trian-
gles on the mesh. If the displacement relative to the pair of
points’ original distance exceeds a certain strain threshold (in
this work, we set it to 1.1), we mark the triangle in between
as separated. At the end of every time step, we reconstruct the
mesh topology using a graph-based approach [22], according to
the tetrahedra face separation information. Due to the existence
of the IPC barrier, which only allows a positive distance be-
tween surface primitives, it is essential to ensure that, after the
topology change, the split faces do not exactly overlap. There-
fore, we perturb the duplicate nodes on the split faces by a tiny
displacement toward the normal direction, which works nicely
even when edge-edge contact pairs are ignored for simplicity.

5.2. Prototyping and input data collection
The simulation-augmented glove-based system is essentially

the same as the VR glove, except for the lack of vibration mo-
tors; however, it is augmented with the simulated force evolved
over time. Compared with the aforementioned two hardware-
focused designs, the simulation-augmented glove-based system
offers an in-depth prediction of physics with fine-grained object
dynamics—that is, how the geometry (e.g., large deformation)
and topology (e.g., fracture) evolve. To showcase the efficacy
of this system, we focus on a tool-use setting wherein a user
manipulates a tool (e.g., a hammer) to apply on a target object
(e.g., a nut), causing geometry and/or topology changes. To
collect one set of data, the hand gestures and poses are recon-
structed similarly using the other two glove-base systems. The
tool’s movement is further tracked to simulate the interactions
between the tool and the object.

More specifically, two Vive trackers track the movements of
the glove-based system (i.e., the hand) and the tool, respec-
tively. The third tracker, which serves as the reference point
for the target object (e.g., a nut) is fixed to the table. All three
Vive trackers are calibrated such that their relative poses and the
captured trajectories can be expressed in the same coordinate.
The target objects and the tool’s meshes are scanned beforehand
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(a) uncracked (b) cracked (c) smashed (d) cut in half

Figure 10: Four types of tool-use events captured by a slow motion camera at 120 FPS.

using a depth camera. By combining the scanned meshes and
captured trajectories, we can fully reconstruct a sequence of 3D
meshes representing the movements of the hand and tool and
simulate the resulting physical effects of the target object. The
captured mesh sequences are directly input to the simulation as
boundary conditions, and the DoFs being simulated are primar-
ily those on the target object. Fig. 10 shows some keyframes of
the data collection for cracking walnuts and cutting carrots. It
should be noted that capturing how the object changes and its
physical properties over time is extremely challenging–if not
impossible–using visual information alone.

5.3. Simulation setup

An object’s material properties in a simulation are mainly re-
flected by its stiffness (i.e., the object is more difficult to deform
or fracture if it is stiffer), governed by its Young’s modulus and
Poisson’s ratio. These parameters must be set appropriately in
the simulation in order to produce effects that match those in the
physical world. The Young’s modulus and Poisson’s ratio of a
material can be found in related works [4, 38, 88]. Another pa-
rameter that must be set is the fracturing strain threshold, which
determines the dimension of the segments when fracturing is
triggered. This parameter is tuned so that the simulator can re-
produce the type of effects observed in the physical world. The
time step of the simulation is the inversion of the sampling fre-
quency of the Vive trackers that acquire the trajectories.

6. Applications

In this section, we showcase a series of applications by recon-
figuring the data glove to the tactile-sensing mode (Section 6.1),
VR mode (Section 6.2), and simulation mode (Section 6.3), all
of which share the same backbone design. (Interested readers
can also refer to the Appendix for video demonstrations.)

6.1. Tactile-sensing mode

We evaluated the tactile-sensing mode by capturing the ma-
nipulation data of opening three types of medicine bottles. Two
of these bottles are equipped with different locking mechanisms
and require a series of specific action sequences to remove the
lid. More specifically, Bottle 1 does not have a safety lock, and
simply twisting the lid is sufficient to open it. The lid of Bot-
tle 2 must be pressed simultaneously while twisting it. Bottle
3 has a safety lock in its lid, which requires a pinching action
before twisting to unlock it. Notably, the pressing and pinching
actions required to open Bottle 2 and Bottle 3 are challenging to
recognize without using the force information recorded by the
glove.

Fig. 11 shows examples of the recorded data with both hand
gesture and force information. The first row of Fig. 11 visu-
alizes the captured manipulation action sequences of opening
these three bottles. The second row shows the corresponding
action sequences captured by an RGB camera for reference.

(a) Bottle 1, no childproof lock (b) Bottle 2, pressing down the lid to unlock (c) Bottle 3, pinching the lid to unlock

Figure 11: Visualizations of the hand gesture and force of opening three bottles collected using the tactile-sensing glove. These visualizations
reveal the subtle differences between the actions of opening medicine bottles and opening a conventional bottle; the essence of this task is that
visual information alone is insufficient to distinguish between the opening of the various bottles. Reproduced from Ref. [56] with permission.
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Figure 12: Force and joint angle recorded by the tactile-sensing
glove. (a) The forces exerted by the palm, (b) forces exerted by the
thumb’s fingertip, and (c) the flexion angle of the index finger’s MCP
joint can disentangle the grasp actions of opening different bottles. Re-
produced from Ref. [56] with permission.

Qualitatively, compared with the action sequences shown in
the second row, the visualization results in the first row differ-
entiate the fine manipulation actions with additional force infor-
mation. For example, the fingers in Fig. 11b are flat and parallel
to the bottle lid, whereas those in Fig. 11c are similar to those in
the gripping pose. The responses of the force markers are also
different due to varying contact points between the human hand
and the lid: The high responses in Fig. 11b are concentrated
on the palm area, whereas only two evident responses on the
distal thumb and index finger can be seen in Fig. 11c. Taken to-
gether, these results demonstrate the significance of accounting
for forces when understanding fine manipulation actions.

Quantitatively, Fig. 12 illustrates one taxel’s force collected
on the palm, the thumb’s fingertip, and the flexion angle of the
index finger’s MCP joint. In combination, these three readings
can differentiate among the action sequences of opening the
three bottles. More specifically, as opening Bottle 2 involves
a pressing action on the lid, the tactile glove successfully cap-
tures the high force response on the palm. In contrast, the force
reading in the same region is almost zero when opening the
other two bottles. Bottle 3’s pinch-to-open lock necessitates a
greater force exerted by the thumb. Indeed, the opening actions
introduce a high force response at the thumb’s fingertip, with
a longer duration than the actions involved in opening Bottle
1 without a safety lock. Without contacting the lid, the thumb
yields no force response when opening Bottle 2. Since open-
ing both Bottle 1 and Bottle 3 involves a similar twist action,
the measured flexion angles of the index finger’s MCP joint are
around 50◦ in both of these cases. Since only the palm touches
the lid and the fingers remain stretched, a small flexion angle
occurs when opening Bottle 2.

A promising application of the proposed glove is learning
fine manipulation actions from human demonstrations. The col-
lected tactile data has facilitated investigations into a robot’s
functional understanding of actions and imitation learning [14,
57], inverse reinforcement learning [90], and learning explain-

(a)

(b)

Figure 13: A Baxter robot learns to open medicine bottles from
the collected manipulation data. Reproduced from Ref. [14] with
permission.

(a) (b)

(c) (d)

Figure 14: Examples of hand and object trajectories collected by
the reconfigurable glove operating in VR mode. Red triangles in-
dicate the starting poses. The red line and the blue lines show the
recorded hand movement and the trajectories of the fingertips, respec-
tively. Once the contact points (green circles) are sufficient to trigger
a stable grasp, the object moves together with the hand, following the
black line, until the grasp becomes unstable–that is, until it is released
at the orange circles. Reproduced from Ref. [58] with permission.

able models that promote human trust [13]. Fig. 13 showcases
the robot’s learned skills of opening different medicine bot-
tles [14].

6.2. VR mode

When operating in VR mode, the reconfigurable glove pro-
vides a unique advantage compared with traditional hardware.
Below, we showcase two data types that can be collected effec-
tively in this mode.

Trajectories Hand and object trajectories are particularly
useful in robot learning from demonstration. Diverse object
models can be placed in the VR without setting up a phys-
ical apparatus to ensure a natural hand trajectory. Fig. 14
shows some qualitative results of collected trajectories: the
hand movement (red line) and the five fingertips’ trajectories
(blue lines) by combining global hand pose and hand gesture
sensing, and the grasped object’s movement (black line) as the
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(a)
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(c)

(d)

(e)

(f)

Figure 15: Contact points in grasping various objects. (a) Objects
to be grasped. (b–d) Three configurations of the contact points per-
formed by different participants. (e) The distance from each contact
point. (f) The average of contact points aggregated from all partici-
pants, indicating the preferred regions of contact, given the objects.

result of hand movement and grasp configuration (stable grasp
or not). These results demonstrate the reliability of our design
and the richness of the collected trajectory information in a ma-
nipulation event.

Contact points It is extremely challenging to obtain the
contact points of the objects being manipulated. Despite rely-
ing As they rely heavily on training data, computer vision-based
methods [75] are still vulnerable to handling occlusion between
hands and objects. Our reconfigurable glove operating in the
VR mode can elegantly log this type of data. Given the meshes
of the virtual hand model and the object, the VR’s physics en-
gine can effectively check the collisions between them. These
collisions not only determine whether the object can be stably
grasped based on the criteria described in Section 4.2 but also
correspond well to the contact points on the grasped object. By
treating a collision point as the spatial center of a spherical vol-
ume whose radius is set to the diameter of the finger, Fig. 15
shows three configurations of contacts collected from different
participants grasping diverse objects. To better uncover the gen-
eral grasp habits for an object, the contact points shown in the
bottom row of Fig. 15 are obtained by averaging the spatial po-
sitions of contacts across different trails, fitted by a Gaussian
distribution.

A fundamental challenge in robot learning of manipulation
is the embodiment problem [10, 57]: The human hand (five
fingers) and robot gripper (usually two or three fingers) have
different morphologies. While this problem demands further
research, individual contact points can also indicate a preferred
region of contact if aggregated from different participants (see
the last row in Fig. 15). Such aggregated data can be used for
training robot manipulation policies despite different morpholo-
gies [57].

6.3. Simulation mode

By incorporating the state-of-the-art physics-based simula-
tion, we empower the data glove to capture fine-grained object
dynamics during manipulations. Fig. 16 showcases simulated

objects’ fluent changes in tool uses. Even when recorded at 120
fps, it is challenging–if not impossible–to capture an object’s
fluent changes (e.g., how a walnut smashes) using a vision-
based method. By feeding the collected trajectory into the sim-
ulation, our system renders object fluent changes that are visu-
ally similar to the physical reality (see Fig. 16a), thereby reveal-
ing critical physical information (see Fig. 16b) on what occurs
in the process.

Results Fig. 16a depicts various processes of hammering a
walnut. The first column illustrates that a gentle swing action
only introduces a small force/energy to the walnut, resulting
in a light stress distribution that is quickly eliminated; as a re-
sult, the walnut remains uncracked. When a strong swing is
performed (third column in Fig. 16a), the larger internal stress
causes the walnut to fracture into many pieces, similar to a
smashing event in the physical world. This difference is re-
flected in Fig. 16b, which was obtained using the physics-based
simulator. It is notable that these physical quantities are chal-
lenging to measure in the physical world, even with specialized
equipment.

Failure examples The fourth column of Fig. 16a shows an
example of cutting a carrot. The imposed stress is concentrated
along the blade that splits the carrot in half. However, when the
cutting action is completed and the knife is lifted, it can be seen
that the collision between the blade and the carrot has caused
undesired fracturing around the cut, which illustrates the limit
of the current simulator.

7. Discussions

We now discuss two topics in greater depth: Are simulated
results good enough, and how do the simulated results help?

7.1. Are simulated results good enough?
A central question regarding simulations is whether the sim-

ulated results are helpful, given that they are not numerically
identical to those directly measured in the physical world. We
argue that simulators are indeed helpful, as a simulation pre-
serves the physical events qualitatively, making it possible to
study complex events. As illustrated in Fig. 16b, the wal-
nut’s effects have a clear correspondence to the pressure im-
posed on the contact. Conversely, although a similar amount
of energy is imposed when cracking the walnut with a ham-
mer and cutting the carrot with a knife (see the second and
fourth columns of hammer and cutting the carrot with a knife
(see the second and fourth columns of Fig. 16), the resulting
pressures differ in magnitude, as the knife introduces a much
smaller contact area than the hammer does, producing distinct
deformations and topology changes. Hence, the simulation pro-
vides a qualitative measurement of the physical events and the
objects’ fluent change rather than precise quantities. Similar
arguments are found in the intuitive physics literature in psy-
chology: Humans usually only make approximate predictions
about how states evolve, sometimes even with violations of
actual physical laws [43]. Such inaccuracy does not prevent
humans from possessing an effective object and scene under-
standing; on the contrary, it is a core component of human
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(a) Reconstructed tool-use events by simulation. The first/third rows show the contact moments between the tool and the object. The sec-
ond/fourth rows are the corresponding stress given by the simulator; red indicates greater stress. The fifth row shows the objects’ final status.

(b) The energy imposed on the objects, the number of fractured pieces, and the contact pressure calculated by the simulator at each time step
during tool use.

Figure 16: Reconstructed 4D manipulation events of tool use by integrating trajectories collected by the reconfigurable glove and physics-
based simulation. This high-fidelity 4D data reveals fine-grained object fluent changes and physical properties at each time step. The results are
produced with a simulation at 20 Hz; one time step is 0.05 s.

commonsense knowledge [78, 79, 98]. Recent work in robot
tool use [52, 95, 100] and physics-informed scene understand-
ing [6, 20, 21, 26, 27, 46, 96, 97, 99] has also demonstrated the
essential role of physics in understanding objects and scenes.

7.2. How do the simulated results help?

The fine-grained object effects produced by the simulation
open up new venues for studying existing AI and robotics prob-
lems. For example, combining task planning and motion plan-
ning [33–35] is a grand challenge in the field of planning. Sim-
ulation could help with this challenge in two aspects [95]: (i) by

grounding ambiguous task symbols to desired outcomes (e.g.,
the action symbol of “crack”), and (ii) by modeling implicit
goal specifications (e.g., the status of “cracked”). In addition,
simulations can be used to augment existing datasets, such as
GARB [81] and GenDexGrasp [52] in grasping, and HUMAN-
ISE [86], CHAIRS [32], and LEMMA [31] in scene under-
standing with unobservable information. Ultimately, we hope
that this type of 4D data empowered by physics-based simu-
lation can shed light on several profound questions in manip-
ulation: What and why an object is chosen (i.e., the physics
involved), how to properly operate that object (i.e., its affor-
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dance), what effect the actor is trying to achieve (i.e., the actor’s
task goals), and what happens when the goal is not achieved
(i.e., planning and replanning).

8. Conclusion

In this study, we presented three different configurations of a
glove-based system based on a unified backbone design, which
differs from most conventional data gloves that only capture
hand gestures. Utilizing piezoresistive Velostat material, the
glove’s tactile-sensing mode can aggregate the hand force in-
formation during manipulation events. In VR mode, the sensed
hand gestures can be reconstructed into a virtual hand to facil-
itate hand-object interactions in VR by incorporating a caging-
based approach, resulting in stable grasps and providing vibra-
tional haptic feedback. The simulation mode further uses an
FEM simulator to produce fine-grained object fluent changes
and physical properties based on hand-related movements, re-
sulting in 4D manipulation events.

We evaluated the components of the system, including the
IMUs, Velostat force-sensor taxels, and haptic feedback pro-
vided by the vibration motors, to demonstrate the capability and
efficacy of the proposed design. By (i) capturing spatiotempo-
ral signals of force and gesture, (ii) recording hand trajectories
and contact points on objects, and (iii) collecting 4D manipu-
lations in challenging manipulation events (e.g., tool use), we
demonstrated that the proposed glove-based system can play a
crucial role in robot learning from humans and in facilitating
embodied AI-related research.
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