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Abstract—Robotic teleoperation systems enable humans to
control robots remotely. Recent advancements in VR have trans-
formed teleoperation into immersive, intuitive platforms that
improve human-machine synergy. However, existing VR-based
teleoperation systems face challenges such as under-informed
shared control, limited tactile feedback, and computational inef-
ficiencies, which hinder their effectiveness in complex, cluttered
scenarios. This paper introduces a novel VR-based teleoperation
system incorporating haptic feedback and adaptive collision
avoidance. The system tracks human hand trajectories via an
VR-based handheld device and provides tactile feedback from
a robotic gripper. Through the proposed tele-MPPI method, the
system anticipates robot motions, adaptively adjusts trajectories
to avoid obstacles, and maintains computational efficiency, en-
abling real-time operation at 20 Hz. Simulations and experiments
demonstrate the system’s ability to grasp delicate objects without
damage and to navigate cluttered environments by mitigating
collision risks.

Index Terms—Teleoperation, virtual reality, human-machine
interface, inverse kinematics.

I. INTRODUCTION

ELEOPERATION systems are a crucial form of Human-
Machine Interaction (HMI), facilitating communication

and control between humans and remote machines or virtual
entities. Over the years, robotic teleoperation has evolved from
basic remote control to advanced, immersive systems where
human operators interact with intelligent robots and virtual
agents in complex, simulated environments. This evolution
has expanded the scope of teleoperation systems, blending
human decision-making with machine precision for improved
synergy: they function as interactive platforms for cognitive
engagement, training, and skill transfer between humans and
intelligent agents [I—4]. These systems have become indis-
pensable across diverse fields, including industrial automation,
healthcare, and remote exploration, by allowing precise and ef-
ficient control over physical or digital entities from a distance.
The advantage of Virtual Reality (VR)-based teleoperation
systems lies in their ability to provide a fully immersive
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Fig. 1: A VR-based robotic teleoperation system with haptic feedback
and adaptive collision avoidance.

virtual environment, allowing operators to interact intuitively
with avatars, robots, or virtual tools, creating a natural and
responsive experience. By integrating real-time data trans-
mission and motion control, VR systems offer a heightened
sense of presence and precision in manipulating virtual or
remote objects. Moreover, VR environments can be adapted to
accommodate various scenarios, such as different robot config-
urations or environmental setups, offering improved flexibility
and adaptability. Combined with handheld tracking devices,
VR-based teleoperation systems further extend the operator’s



interactive awareness by incorporating sensory feedback, such

as vibrations [5, 6]. Compared to exoskeleton-based systems,

VR-based teleoperation offers greater flexibility, immersion,

and reduced physical strain. Additionally, it overcomes the

limitations of vision-based teleoperation, including sensitivity
to lighting variations or potential occlusions, which can lead
to recognition loss and reduced operational precision.

Nonetheless, VR-based robotic teleoperation faces several
challenges. First, VR handheld devices inherently introduce
an under-informed shared control problem [7], where multiple
possible Inverse Kinematics (IK) solutions exist for achieving
the same end-effector pose. Some solutions may adversely
impact subsequent operations, leading to singularities or col-
lisions with the surrounding environment. And exhaustively
searching through all possible robot configurations would
significantly increase computational complexity. Additionally,
current VR handheld devices provide limited perceptive feed-
back, particularly lacking haptic feedback compatible with
robotic systems—such as the ability to convey grasping forces
from a parallel gripper—which restricts the operator’s tactile
perception. This shortcoming makes grasping delicate objects
particularly challenging. In summary, these limitations reduce
the effectiveness of existing teleoperation systems, particularly
in successfully performing sophisticated robotic tasks in clut-
tered or dynamic environments.

This work presents a novel real-time VR-based teleoperation
system with haptic feedback and adaptive collision avoidance,
as is shown in Fig. 1. The system controls the robot’s end-
effector by tracking human hand trajectories captured through
a VR-based handheld device, while simultaneously providing
real-time feedback of grasping forces measured from the
tactile sensor mounted on the robotic parallel gripper to
the handheld device. By integrating Model Predictive Path
Integral (MPPI) control and IK generative model, the system
anticipates future motion during trajectory selection, resulting
in a highly efficient teleoperation system that can adaptively
avoid obstacles. In a series of simulations and experiments,
we demonstrate the effectiveness of our teleoperation system.
The operator successfully grasps delicate objects such as paper
cup, strawberry, and potato chip without damage, showcasing
the system’s precision and haptic feedback capabilities. Ad-
ditionally, within cluttered environments, we show that even
when the captured human hand trajectory leads to potential
collisions with environmental obstacles, the proposed method
actively adjusts the robot’s trajectory to avoid collisions while
maintaining accurate tracking.

The main contributions of this work are three-fold:

o We present an integrated haptic feedback system that en-
hances the perception of grasping forces, enabling operators
to grasp delicate objects more effectively.

« We propose a tele-MPPI framework that combines MPPI
control with a generative IK model to predict motion
trajectories and dynamically adjust robot paths, ensuring
collision-free operation in cluttered environments.

« We develop a comprehensive VR-based teleoperation system
that integrates haptic feedback and real-time trajectory track-
ing of a robotic gripper for precise and safe manipulation
in complex environments.

II. RELATED WORK
A. Teleoperation Systems

The applications of robotic teleoperation have evolved sig-
nificantly, expanding from their early use in handling radioac-
tive materials [8] to a diverse range of modern domains [9].
Current teleoperation methods are broadly categorized into
exoskeleton-based, vision-based, and VR-based approaches,
depending on the motion capture devices.

Exoskeleton-based Teleoperation Systems, rooted in tra-
ditional teleoperation principles, have a long history of de-
velopment [9]. Renowned for their high precision and real-
time performance, they are particularly favored in medical
applications. These systems directly capture motion signals
from meticulously designed devices, enabling straightforward
mapping to robotic systems [10, 1 1]. However, their design is
often expensive, bulky, complex to maintain, and task-specific,
limiting versatility and adaptability across different robots.

Vision-based Teleoperation Systems have emerged as a
mainstream method, driven by significant advancements in
computer vision [12]. By eliminating the need for wearable
equipment, this approach significantly reduces operator burden
while enhancing flexibility and convenience. However, it is
highly sensitive to lighting conditions, susceptible to occlu-
sions, and lacks somatosensory feedback, which undermines
motion recognition and operational accuracy.

VR-based Teleoperation Systems have reshaped HMI,
introducing immersive experiences and improved interactivity
essential for teleoperation. Most VR-based systems utilize
commercial VR headsets, combining real-time data acqui-
sition, ease of use, and reliable implementation [13]. By
leveraging technologies such as vision, infrared, and IMUs,
VR-based systems address many of the limitations of methods
solely based on vision while avoiding the unwieldy devices
of exoskeleton-based systems. Building upon these VR inter-
faces, we propose a teleoperation system that enhances further
their capabilities with integrated haptic feedback and real-time
motion re-targeting for precise manipulation with automatic
obstacle avoidance in complex environments.

B. Teleoperation Interface

The user interface in VR-based teleoperation is crucial
for delivering sensory feedback to operators, such as visual,
auditory, and tactile cues. Visual feedback provides immersive
real-time graphics, enabling users to monitor interactions be-
tween the robot and its environment while enhancing spatial
awareness and decision-making efficiency [14, 15]. Auditory
feedback, such as ambient sounds and collision alerts, helps
operators interpret changes and operational states through
audio signals [16]. Tactile feedback, however, remains the
most challenging to implement. Most VR controllers rely on
basic vibration feedback [6] and are not optimized for robot-
specific tasks like replicating gripper actions. While haptic
gloves [4] provide more sophisticated feedback mechanisms,
their high cost and limited accessibility hinder widespread
adoption. To address these limitations, our work introduces
a specialized handheld device designed to deliver effective
haptic feedback during object teleoperation.



C. Robot Motion Retargeting

Robot motion retargeting involves translating human mo-
tion signals into corresponding robotic commands, aiming to
minimize discrepancies between human intent and the robot’s
movements while adhering to constraints such as physical
limitations, environmental obstacles, and the robot’s structural
characteristics. The simplest method involves directly mapping
human joints to robot joints [17]. While straightforward, this
approach lacks flexibility and requires complex hand-tuning
for different robot configurations. Model-based optimization
[18,19] can theoretically achieve optimal retargeting results
but often involves lengthy iterations and the risk of converging
to local optima due to poor initial conditions [20]. Learning-
based approaches train networks to meet specific retargeting
requirements, offering adaptability and flexibility [21,22].
However, they are data-dependent and lack transferability to
new robots. IK approaches [23-25], on the other hand, are
highly versatile across different robotic arms and can generate
real-time joint configurations that precisely follow end-effector
trajectories. In practice, robotic arms often feature redundant
Degree of Freedoms (DoFs). Selecting an inappropriate robot
configuration can result in unexpected outcomes, including
collisions with the environment. In this article, we propose
a tele-MPPI framework that combines MPPI control with a
generative IK solver to predict motion trajectories and dy-
namically select optimal configurations in a real-time manner,
ensuring collision-free teleoperations.

III. THE TELEOPERATION DEVICE

This section outlines the hardware design of our handheld
interface with haptic feedback, which was developed for
compatibility with standard robotic systems. Our goal is to
develop a portable handheld teleoperation interface, see Fig. 2,
that facilitates immersive interaction with robotic systems. The
design is guided by the following criteria: i) Lightweight and
Portable: A compact and lightweight design features mobility
and ease of use, providing greater flexibility while minimiz-
ing user fatigue during operations. ii) User-Friendly Hap-
tic Feedback: The ergonomically designed interface provides
tactile feedback, enabling precise manipulation, particularly
in teleoperation tasks involving delicate objects, thereby im-
proving efficiency and responsiveness in complex operations.
iii) Easy-to-Fabricate: The design emphasizes simplicity in
manufacturing and assembly, reducing setup and deployment
time. This ensures quick and seamless integration into different
teleoperation systems.

A. Hardware

The internal structure of the handheld teleoperation interface
is illustrated in Fig. 2. The device features a VR tracker
mounted at the top, which wirelessly transmits hand position
data to a computer at a maximum frequency of 86.9 Hz.
Embedded within the handle is a servo motor, coupled with a
rotor and slider mechanism, to measure the distance between
the user’s thumb and index finger via servo position values. A
microcontroller unit, integrated into the handle, communicates
with the computer via USB at a maximum baud rate of
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Fig. 2: Hardware design of the handheld device. The exploded view
illustrates each component and its installation.

6 Mbps. Power is provided by a 5V 4000mAh lithium battery
housed at the base, enabling up to 7.5 hours of continuous
operation. The device measures 21 cm in length, weighs 400 g,
and balances functionality with portability for extended use.

B. Haptic Feedback

The handheld device integrates bidirectional control and
haptic feedback to facilitate intuitive teleoperation with col-
lision avoidance capabilities. On the handheld device side,
operators can actively control the robotic system by moving
the handle and slider. The tracker captures the device’s 6D
pose information, while the motor encoder provides positional
data for the robotic gripper’s opening and closing move-
ments. These inputs are transmitted to the robotic system,
enabling precise control of the end-effector’s 6D pose and
gripper operation. The 6D pose data is also utilized for robot
motion retargeting and collision avoidance, as discussed in
Sec. IV-A. On the feedback side, a Vision-based Tactile Sensor
(VBTS) [26,27], is integrated into the robotic system to deliver
tactile feedback. The VBTS consists of a soft gel layer that
adapts to surface details upon contact and a camera system that
records the gel’s deformations. Image data is processed using
photometric stereo techniques to derive force information,
which is transmitted back to the user. The handheld device uses
the motor under current control mode to generate resistance
on the slider by reversing its rotation in response to the sensed
forces, delivering haptic feedback as:
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where I, ey, Imaz, I, Frnaz TEpresent the goal current, maxi-
mum current of the motor, sensed force, maximum force of
the sensor, and k is the scaling factor. To avoid unnecessary
influence on the operator caused by sensor noise when there is
no actual contact with an object, a feedback threshold is set.
When the calculated current ratio falls below this threshold
(set to 0.05 by default), the output is suppressed to zero.
This integration improves the realism of interaction, effectively
bridging the user’s actions with the remote robotic system.
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Fig. 3: The overview of the proposed VR-based robotic teleoperation system with haptic feedback and adaptive collision avoidance.

IV. THE TELEOPERATION SYSTEM

The overview of the proposed teleoperation system is illus-
trated in Fig. 3. Building upon the tactile feedback handheld
device, we devise a collision avoidance module that processes
human hand trajectories through three key stages to generate
collision-free robot motions. First, a calibrated retargeting
system maps the handheld device to the robot coordinate
system, enabling intuitive motion transfer. Then, the retargeted
poses feed into a GPU-accelerated IK solver, which efficiently
generates diverse inverse kinematic solutions while maintain-
ing precision through post-optimization refinement. Finally,
our tele-MPPI framework processes these solutions in parallel
to generate smooth, collision-free trajectories by optimizing
joint accelerations with respect to end-effector tracking ac-
curacy and constraint satisfaction. This integrated approach
enables simultaneous real-time force feedback through the
VBTS and safe robot end-effector trajectories, allowing users
to achieve precise control with both tactile awareness and
collision avoidance during operation.

A. Retargeting

To capture the motion of the handheld device, we em-
ploy two VR base stations and a tracker mounted on the
device. Prior to using the teleoperation system, calibration
is performed to estimate the handheld device’s workspace
for motion retargeting. During calibration, the operator holds
the device, raises their arm to a front-raised position, and
maintains the pose for 5 seconds. While the posture may
vary depending on whether the operator is seated, standing, or
performing specific tasks, the procedure remains consistent.

The position readings x2,;, yoy» and z2; from the tracker
are used to map the handheld device’s pose in the VR coor-
dinate system to the robot manipulator’s coordinate system:
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where [, ylr, zp TEpresent the robotic arm’s end-effector
home position, and a, b, and c¢ are scaling parameters to
account for workspace differences between the VR tracker
and the robotic manipulator. This transformation ensures ef-
fective alignment between the handheld device and the robot’s
workspaces, enabling intuitive motion retargeting.

Once calibrated, motion retargeting translates tracker po-
sitions into corresponding end-effector positions. Given the
tracker’s positional readings (z},y}, z7) in the VR frame, the
retargeting transformation is expressed as:
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where the scaling parameters a, b, and c adaptively scale
and translate human motion to align with the robotic arm’s
workspace. Additionally, the handheld device’s orientation is
directly mapped to the robot end effector’s orientation, as
they share the same during initialization. This ensures that
the operator’s gestures intuitively translate into precise robotic
movements. Overall, this setup facilitates seamless interaction
between the operator and the robotic system.

B. GPU-based IK Solver

Real-time teleoperation requires efficient generation of fea-
sible robot trajectories that accurately track human motion.
A key challenge in this process is obtaining diverse IK solu-
tions to determine appropriate robot configurations that avoid
environment collisions while tracking desired end-effector
poses. Traditional numerical IK solvers, despite their precision,
prove computationally prohibitive for real-time applications,
particularly when diverse solutions are needed at scale.

To address this computational bottleneck, we adopt a gen-
erative model based on conditional normalizing flows [28].
This model transforms the IK solution process into a sampling
problem from a learned conditional distribution of the solution
space, parameterized by the desired end-effector pose. Thanks
to the parallel nature of the neural network, our approach can
generate approximately a batch of 2000 diverse feasible joint
configurations in a single forward pass within 10ms.



While computationally efficient, the sampled solutions ex-
hibit accuracy limitations with position and orientation de-
viations of 12 mm and 3 degrees respectively. We resolve
this through a hybrid approach that combines the genera-
tive model with a GPU-accelerated optimizer [29] to refine
the sampled solutions. By using the sampled solutions as
seeds for the optimizer, we achieve remarkable precision with
positional accuracy within 0.0lmm and rotational accuracy
within 0.05 degrees. This hybrid methodology processes 2000
high-precision solutions within 40ms on average, successfully
balancing computational efficiency with the accuracy demands
of real-time trajectory generation.

C. Tele-MPPI

Traditional optimization methods face significant challenges
in converting IK solutions into feasible robot trajectories,
particularly in three key areas: time efficiency, trajectory
smoothness, and obstacle avoidance. Real-time teleoperation
requires rapid processing of numerous IK solutions while
maintaining smooth trajectories to prevent jerky motions that
could compromise control stability. Additionally, generating
collision-free paths further compounds these challenges.

To address these limitations, we propose tele-MPPI which
leverages the MPPI control in our teleoperation system. Tele-
MPPI introduces noise into joint acceleration, causing joint
trajectories to diffuse over time. Through importance sampling
in the joint space, the algorithm identifies optimal trajectories
by minimizing a predefined cost function. This approach effec-
tively combines filtering infeasible IKs solutions, generating
collision-free paths, and smoothing whole trajectories.

The complete tele-MPPI algorithm is presented in Alg. 1.
Given a sequence of tracker poses {77.1.+, over an observation
horizon h, these poses are retargeted to the robotic end-effector
poses .. Ti.14n. A GPU-based IK solver computes a set of
possible robot joint states Q7. ,,, which serve as input for
tele-MPPIL. Next, the GreedySearch(-) function selects M
candidate trajectories from Q7.,,,, prioritizing trajectories
with minimal consecutive time-step distances. This ensures
the selection of feasible and efficient trajectories in real-time.

In the standard MPPI algorithm, directly adding noise to
control inputs can cause trajectory discontinuities. To mitigate
this issue, our proposed tele-MPPI method instead applies
noise to joint accelerations, while maintaining joint posi-
tions and velocities as state variables. This approach ensures
smoother trajectories while sampling initial joint accelerations
from previously generated paths to incorporate diverse IK
solutions. The perturbed control input is given by @ = § + ¢
where 4 represents the control input with noise, and the noise
is sampled from a normal distribution A/(0,o?).

The tele-MPPI algorithm employs a comprehensive cost
function to generate smooth, collision-free trajectories. The
total cost for each rollout is defined as:

h
Ctotal = C’smooth + Z CVrun + "}/Cperh (8)

where Cymooth €nsures trajectory continuity by penalizing large
joint movements, C,, combines end-effector tracking accu-

Algorithm 1: Tele-MPPI
Input

: Q7.,: Robot joint configurations over the
observation horizon h
F': System transition model
Output : ¢7..: Joint velocity commands
Params : M: No. of candidate trajectories
E: No. of control noise vectors
o: Noise standard deviation
>2: Covariance matrix between added noises
/I Get current robot state
qo, go, go  robot.getState()
/I Greedy search for M trajectories
{an}ar < GreedySearch(Q1.1)
U«+0
/I Iterate over M trajectories
for m=1,2,..., M do
A1t 1w < dif f(q™1.n)
/I Sample E control noise vectors
{0, €1, em—1} ~ N(0,07)
fore=0,1,...,E—1do
To, uo, C(e) < {qo,do}, {do},0
/I Add noise to the system
fort=1,2,...,h do
‘ ¢ F(zi—1,u-1 + €c(t))
end
/I Evaluate trajectory effort
C(e) «
Csmooth(mh) + Z?:l Cmn(mt) + VU:_12716t71

D-T-CRE B Y Y

T e <=
N R W N =D

19 end

20 /I Compute control input according to the cost
21 p < minC'

n | ne Xl e><p(§(0(e) =)

B U™+ L exp(5(Cle) = p))ee
24 U«~Uuu™

25 end

26 // Compute joint positions and velocities

27 Q™, Q™ «+ integrate(U)

28 // Select the best trajectory for execution

29 §i.. < selectBest(Q™, Qm, U)

=

racy and constraint violation penalties over the horizon h, and
Chert discourages noisy trajectories weighted by +.

The running cost Cyy, evaluates both end-effector tracking
accuracy and constraint violations:

Crun = Ce + C, 9
C. = w, - (I(collision) + I(limit)), (11)

where f(-) represents the forward kinematics given the joint
configuration ¢, 7.7 denotes the target pose, and I(-) is
an indicator function that suggests collision or joint limit
violations with weight w.

The smoothness cost Cyoom €nsures trajectory continuity:

h
Csmooth = Z <||Qt —qi—1]|+ max (¢ — C]t—l)k|) , (12)

1<k <nqof

where ||g: — q:—1|| penalizes total joint travel distance, and
MaX1<k<ng | (@t—qi—1)k| penalizes maximum individual joint
displacement between consecutive waypoints. These terms
work together to generate smooth trajectories while preventing
jerky or unstable joint movements.
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Fig. 4: Snapshots from five trials in the simulated environment demonstrating the proposed tele-MPPI method. The robot successfully avoids
obstacles while following green trajectories controlled by the human operator.

Finally, the perturbation cost Cr introduces a noise penalty
over the control input:

Cpert = U+ X e, (13)

where u is the perturbed control input, 3 is the control
covariance matrix, and ¢ is the noise vector. This term penal-
izes noisy trajectories in the optimization process, promoting
smoother and more stable joint trajectory solutions.

These cost terms collectively promote stable and smooth
trajectories while maintaining computational efficiency for
real-time control. The weight for each rollout is computed
according to their total cost as follows:

1 1
== ——(C -
o= Lo (~Lio-n),
where p is the minimum cost among all rollouts, and n =
> exp (—5(C — p)) serves as the normalizing factor

(14)

The final control command is computed as a weighted sum
of perturbed accelerations:

E

U = Z w - U.

To determine the optimal solution, the system generates M
trajectories through parallel execution of the aforementioned
procedure. The system performs temporal integration on joint
accelerations to obtain positions and velocities, then the opti-
mal solution is found by evaluating the cost function over all

15)

M trajectories as follows:

u* = arg min (Cysmooth (1) + Crun(w)) . (16)

u
Since wu represents a weighted sum across all rollouts
(see (15)), the weighting factors mitigate the effects of noise
in @. Thereby, the perturbation cost Cey; is omitted from (16).
Prior to execution, the optimal trajectory undergoes quintic
interpolation to ensure smooth and continuous motion of the
robotic manipulator.

V. SIMULATION AND EXPERIMENT

The proposed system was validated through two distinct sets
of experiments: (1) trajectory tracking and obstacle avoidance
in simulated and real-world environments, and (2) qualitative
evaluation of the haptic feedback module via grasping tasks
on fragile/deformable objects. The system was implemented
in Python, with the MPPI algorithm accelerated via GPU
for parallel computation. The hardware included a 7-DoF
robotic arm equipped with two VBTSs on its end-effector,
a VR base station, and a custom handheld device. Simulations
were conducted using a physics-based simulator, while real-
world experiments utilized a real-time kernel-based lower-
level controller. The system operates at 20 Hz, processing
data from observation horizon h = 10 time steps per cycle.
A GPU-based inverse kinematics solver generates » = 100
candidate solutions per time step, with a greedy search se-
lecting M = 20 optimal trajectories. The MPPI algorithm is
configured with A = 100, v = 20, and noise covariance matrix
¥ = diag(5,5,5,5,5,5,5). For each trajectory, £ = 300
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Fig. 5: Real-world experiment comparing the proposed teleop-
eration system with the tele-MPPI method to a baseline system
without tele-MPPI. (a) Without the tele-MPPI module, the elbow
collided with and knocked over the water bottle. (b) With the tele-
MPPI module, the arm made fine adjustments to its elbow joint to
avoid collisions. (c) The arm performed alternative pose adjustments
to navigate around the obstacle and successfully retrieve the orange.

noise-perturbed trajectories are generated in parallel, with
the first ¢ = 2 points used for the arm control. Quintic
interpolation is applied at the end to smooth the trajectory.

A. Haptic Feedback Module Validation

This experiment validates the effectiveness of the haptic
feedback gripper module. The robotic arm’s gripper was
controlled via the handheld device to grasp delicate objects.
System performance was evaluated by monitoring object de-
formation and feedback from the handheld device.

Grasp fragile objects: Experiments were conducted on
fragile objects, including strawberries, oranges, chips, hand
cream containers, and paper cups. As shown in Fig. 1(b)
and the supplementary video, the system effectively controlled
gripper force to prevent deformities or damage to the objects
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Fig. 6: Haptic feedback latency performance of the proposed system.
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Fig. 7: Trajectory tracking performance of the proposed system.

while ensuring stable grasping. The gripper dynamically ad-
justed its force during manipulation to maintain stability.

Feedback frequency and latency: As shown in Fig. 6, the
latency between the tactile sensor and the servo was measured
to be approximately 200ms, with a frequency of 15Hz.

B. Trajectory Tracking and Obstacle Avoidance

This set evaluated the system’s ability to track trajectories
and avoid collisions in structured environments.

Teleoperation with collision avoidance: As shown in
Fig. 4, simulated tasks included placing a bottle, moving the
arm around a pillar obstacle, placing a can, and navigating
around a bookshelf. In the real-world setting in Fig. 5, the
human operator controlled the robotic arm to retrieve an
orange behind a water bottle. The robotic arm dynamically
adjusted its pose to navigate constrained spaces.

In the Place Bottle 1 task, the arm moved the bottle from
its initial to the target position, dynamically adjusting its pose
to avoid obstacles. As shown in Fig. 4 3) to (5), the gripper
rotated the bottle to bypass the obstacle and quickly recovered
for subsequent placement. In the Place Bottle 2 task, the
arm returned the bottle to its original position, adopting a



hugging posture to avoid the obstacle and making significant
pose adjustments for larger movements. In the Move Arm
1 task, the robot initially could not reach the target due to
obstruction by the pillar obstacle. However, the tele-MPPI
algorithm successfully identified an alternative path, guiding
the arm around the obstacle from above to reach the target.

In the second simulation task, Place Can and Move Arm 2,
the arm retrieved a can from a shelf and placed it above the
shelf while avoiding collisions. When the operator attempted
to guide the arm into the shelf at different angles, the system
automatically adjusted the arm’s posture or halted movement
if no collision-free path was available.

In real-world experiments, as shown in Fig. 5, initial trials
without the tele-MPPI module resulted in the elbow colliding
with and knocking over the water bottle. When the tele-MPPI
module was enabled, the arm made fine adjustments to its
elbow joint to avoid collisions. In a third trial, with the orange
positioned closer to the obstacle’s left side, the arm performed
significant pose adjustments to navigate around the obstacle
and successfully retrieve the orange.

Trajectory tracking: The robotic arm traced an "8" shape
in free space to evaluate teleoperation tracking performance.
As shown in Fig. 7, the end-effector trajectory closely follows
the command trajectory from the handheld device, with mini-
mal deviations at rest poses. A slight time lag of approximately
0.5 seconds occurs during dynamic motions, caused by the
tele-MPPI algorithm’s requirement for sequential operator
commands (h = 10 at 20 Hz) as input. Despite this latency, the
system demonstrates robust steady-state tracking performance,
confirming its effectiveness for teleoperated tasks. Addition-
ally, between 30—40 seconds, tracking error increases as the
robot prioritizes self-collision avoidance, slightly compromis-
ing end-effector tracking accuracy.

VI. DISCUSSION

The latency in the collision avoidance and trajectory track-
ing experiments mainly stems from the MPPI algorithm itself,
which inherently introduces delays due to the need to compute
a sequence of control actions over a prediction horizon. One
potential approach to reducing this latency is to incorporate
action prediction algorithms that can proactively generate
control sequences, rather than relying on sufficient real-time
data collection before execution. However, such predictive
methods often come at the cost of reduced accuracy, which
can compromise system performance in complex or dynamic
environments. The tracker introduces only minimal intrinsic
error; however, the stability of its output data is somewhat
limited, resulting in occasional jitter in the robotic arm during
teleoperation. This can be mitigated through appropriate signal
filtering techniques to enhance overall control stability. The
Haptic Feedback system experiences latency from multiple
sources, including the visual-tactile sensor’s camera (due to
image acquisition and processing), system-level data trans-
mission and computation delays. Given current hardware and
system constraints, these latencies are relatively difficult to
eliminate in the short term.

VII. CONCLUSION

This work presented a teleoperation system integrating the
newly proposed tele-MPPI algorithm for real-time obstacle
avoidance and trajectory tracking, combined with a haptic
feedback handheld device for delicate object manipulation.
The system’s performance was validated through simulation
and real-world experiments. Key results demonstrated that
the tele-MPPI module enables dynamic obstacle avoidance
in cluttered environments (e.g., navigating around pillars and
shelves) while maintaining trajectory fidelity. The haptic feed-
back gripper module proved effective in preventing damage
to fragile objects through adaptive force control, with real-
time adjustments informed by haptic and visual feedback. The
system’s computational efficiency, operating at 20 Hz with
GPU-accelerated parallelization, underscores its suitability for
real-world applications.
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