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Fig. 1: The M3Bench benchmark challenges mobile manipulators to generate whole-body motion trajectories for object manipulation in
3D scenes. Given a 3D scan, a target segmentation mask, and a task description, the robot must understand its embodiment, environment,
and task objectives to produce coordinated motions for picking or placing objects.

Abstract—We propose M3Bench, a new benchmark for whole-
body motion generation in mobile manipulation tasks. Given
a 3D scene context, M3Bench requires an embodied agent
to reason about its configuration, environmental constraints,
and task objectives to generate coordinated whole-body motion
trajectories for object rearrangement. M3Bench features 30,000
object rearrangement tasks across 119 diverse scenes, provid-
ing expert demonstrations generated by our newly developed
M3BenchMaker, an automatic data generation tool that produces
whole-body motion trajectories from high-level task instructions
using only basic scene and robot information. Our benchmark
includes various task splits to evaluate generalization across
different dimensions and leverages realistic physics simulation
for trajectory assessment. Extensive evaluation analysis reveals
that state-of-the-art models struggle with coordinating base-
arm motion while adhering to environmental and task-specific
constraints, underscoring the need for new models to bridge
this gap. By releasing M3Bench and M3BenchMaker at https:
//zeyuzhang.com/papers/m3bench, we aim to advance robotics
research toward more adaptive and capable mobile manipulation
in diverse, real-world environments.
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I. INTRODUCTION

HUMANS possess an innate ability to manipulate their
environment with remarkable flexibility and coordina-

tion, seamlessly integrating locomotion and manipulation. In
contrast, robots still struggle to achieve this level of adaptabil-
ity and proficiency in mobile manipulation. Current learning-
based models and motion planning methods for mobile manip-
ulators often address individual subproblems in isolation, such
as navigating to waypoints, manipulating with a fixed mobile
base, or grasping objects. However, neglecting the potential
of coordinated whole-body motion can lead to misalignment
between module outputs and task constraints. For instance, in
a typical object-fetching task, a navigable position near the
target object may still be impossible for the arm to reach the
object, or a feasible grasp pose may become unachievable due
to collisions with surrounding objects (see Fig. 2a). These
limitations underscore the necessity of coordinating whole-
body motion with a comprehensive understanding of robot
embodiment, environmental context, and task objectives to
enable effective mobile manipulation in complex 3D scenes.

To generate whole-body motion for mobile manipulation
tasks, there is an ongoing debate regarding the effectiveness
and limitations of model-based motion planning methods
versus data-driven learning-based models. While motion plan-
ning can produce complex whole-body mobile manipulation
skills [1, 2], its effectiveness and generalizability in real-world
scenarios are constrained by its reliance on perfect environ-

https://zeyuzhang.com/papers/m3bench
https://zeyuzhang.com/papers/m3bench
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(a) Failure scenarios of mobile manipulation in 3D scenes
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Fig. 2: Illustration of whole-body motion trajectories in 3D scenes.
(a) Treating the mobile base and arm as separate entities can lead to
two typical failures: a nearby navigable position may be impractical
for the arm to reach the object (red), and a feasible grasp pose may
be unachievable due to the robot’s embodiment and environmental
constraints (orange). (b) Our tool generates feasible whole-body
motion trajectories from high-level instructions, requiring only the
action type, target object, and URDF files of the scene and robot.
The green overlay illustrates a generated trajectory for the “pick that
salt shaker” task.

mental knowledge [3–5] or predefined goal configurations
(e.g., grasp poses [6–8]). On the other hand, learning-based
models have shown promising results in execution under per-
ceptual and action noise, chaining primitive skills, and adapt-
ing to certain environmental variations [9, 10]. However, they
have yet to demonstrate robust base-arm coordination with
situated goal configurations (e.g., achieving specific grasps
or object placements). Learning complex mobile manipulation
tasks requires datasets that capture whole-body motions in 3D
scenes, yet such datasets remain scarce due to the challenges in
generating whole-body motion data. Furthermore, evaluating
learned models necessitates a standardized environment for
fair benchmarking.

Table I presents recent state-of-the-art benchmarks for Em-
bodied AI and robotics. Many of these benchmarks simplify
actions to symbolic operations [11, 12] or navigation [13],
lacking physical interaction with the environment. While more
recent benchmarks enable fixed-base manipulators to interact
with objects in realistic simulations [14–17] or allow mobile
agents to navigate and manipulate in 3D scenes [18–20], they
often overlook the necessity of coordinating base and arm
motions.

To address the need for generating whole-body motions in
mobile manipulation, we introduce M3Bench, a comprehen-

sive benchmark that features challenging object rearrangement
tasks that require a mobile manipulator to reason about its
embodiment, environmental context, and task objectives to
generate coordinated motions for picking and placing objects
in diverse household scenes (see Fig. 1). M3Bench comprises
30,000 object rearrangement tasks involving 32 distinct object
types across 119 household scenes, covering a broad spectrum
of task objectives and environmental constraints relevant to
embodied mobile manipulation. Additionally, it includes rich
metadata, such as natural language task instructions, panoptic
maps, and egocentric camera videos, making it a valuable re-
source for related research in Embodied AI, such as embodied
instruction following and human-AI collaboration.

Leveraging M3Bench, we developed M3BenchMaker (see
Fig. 2b), an automatic data generation tool designed to produce
whole-body motion trajectories as expert demonstrations for
robot learning. M3BenchMaker procedurally generates co-
ordinated trajectories from high-level task instructions, re-
quiring only the action type, object link, and the Unified
Robot Description Format (URDF) of the scene and robot.
It employs an energy-based model to predict grasp pose and
placement candidates [21], and it leverages an advanced virtual
kinematics technique [2] to compute coordinated whole-body
motion trajectories (see Sec. II for details). This tool not
only addresses the scarcity of high-quality whole-body mobile
manipulation data but also allows researchers to generate
additional samples customized to specific robot and scene
configurations for their own studies.

To enable in-depth evaluation of motion generation from 3D
scans for mobile manipulation, M3Bench incorporates various
task splits to assess generalization across different dimensions,
such as novel scenes and objects. We utilize a realistic physics
simulation platform [22] to evaluate the feasibility of generated
motion trajectories, ensuring that the robot can physically
grasp objects and place them stably at the desired loca-
tions. Furthermore, our benchmarking reveals that sampling-
and optimization-based motion planning methods [23, 24],
even when augmented with affordance prediction, as well
as learning-based autoregressive planning and generative AI
techniques [9, 10, 25], struggle to effectively solve mobile
manipulation tasks when required to account for goals such as
grasp poses for picking and placement locations for placing
actions. After integrating action goals into motion generation,
learning-based methods outperform modularized motion plan-
ning in computational efficiency and simplicity of problem
setup but still lag in motion accuracy. This underscores the
importance of high-quality whole-body mobile manipulation
data generated by tools like M3BenchMaker and highlights the
necessity of M3Bench for advancing research in whole-body
motion generation for mobile manipulation in 3D scenes.

Contribution: We make the following contributions:
‚ We introduce M3Bench for benchmarking task-oriented

whole-body motion generation for mobile manipulation
in household environment, and we provide assets re-
quired for testing traditional planning-based methods or
learning-based methods.

‚ We develop M3BenchMaker, an automatic whole-body
motion generation tool based on high-level task instruc-
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TABLE I: Relevant datasets and benchmarks in robotics. The M3Bench provides comprehensive whole-body motion demonstrations
for object manipulation across 566 household scenes. Mobile Manipulation: Simultaneous navigation and object manipulation with foot-
arm coordination. Whole-body Demonstration: Provides whole-body motion data. 1Simplified cases without navigation and coordination.
Procedural Generation: Algorithmic procedure for creating varied tasks and trajectories. Household Scene: Tasks performed in 3D household
environments. Language: Natural language task descriptions. Physical Grasp: Realistic physics-based grasping simulation. 2Simplified grasp
(e.g., attach). Egocentric Perception: Provides egocentric visual sensory data (e.g., RGB-D images). 3No rendered RGB images. Flexible
Material: Customizable materials and textures for visual diversity.

Benchmark Mobile
Manipulation

Whole-body
Demonstration

Procedural
Generation

Household
Scene Language Physical

Grasp
Egocentric
Perception

Flexible
Material

ACRV [26] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗
Alfred [27] ✗ ✗ ✓ 120 ✓ ✗ ✓ ✗

ManiSkill [15, 17] ✓ ✓1 ✗ ✗ ✗ ✓ ✓ ✗
Calvin [28] ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗
Behavior [18] ✓ ✗ ✓ 50 ✗ ✗ ✓ ✓

RLBench [14] ✗ ✗ ✓ ✗ ✗ ✓2 ✓ ✗

VLMbench [29] ✗ ✗ ✓ ✗ ✓ ✓2 ✓ ✗

Ravens [30] ✗ ✗ ✓ ✗ ✓ ✓2 ✓ ✗

MotionBenchMaker [16] ✗ ✗ ✓ ✗ ✗ ✗ ✓3 ✗
Habitat HAB [19] ✓ ✗ ✓ 105 ✗ ✗ ✓ ✗
ARNOLD [31] ✗ ✗ ✗ 20 ✓ ✓ ✓ ✓

Ours ✓ ✓ ✓ 119 ✓ ✓ ✓ ✓

tions, which can be easily customized for different robot
and scene configurations.

‚ We provide an in-depth evaluation of motion generation
from 3D scans for mobile manipulation, revealing weak-
nesses of current arts in promoting future research in
mobile manipulation across diverse 3D scenes.

Overview: The remainder of this paper is orga-
nized as follows. Sec. II describes the key components of
M3BenchMaker. Sec. III details the development of the envi-
ronment and the benchmarking setup. We implement multiple
methods for mobile manipulation and discuss their perfor-
mance in Sec. IV, and we conclude the paper in Sec. V.

II. THE M3BENCHMAKER

Diverse whole-body motion trajectories for mobile manip-
ulators in complex 3D environments is crucial for advancing
embodied AI. However, collecting expert demonstrations for
training models are usually time-consuming and challeng-
ing. To address this, we introduce M3BenchMaker, a user-
friendly tool that streamlines the generation of whole-body
motion trajectories in 3D scenes, significantly reducing the
time and effort required to create large-scale datasets for
mobile manipulation tasks in various environments. Notably,
M3BenchMaker is adaptable to different robot and scene given
the URDF files that describe the configurations, enabling
researchers to generate customized whole-body motion trajec-
tories for their specific research needs. Fig. 3 illustrates the
architecture of the M3BenchMaker.

A. Task Builder

The task builder serves as the primary user interface,
allowing users to define manipulation tasks using high-level
action commands such as picking, placing, and reaching.
Users no longer need to manually specify grasping poses,
placement locations, base positions, or create optimization
programs for motion trajectories. To define a task, users simply
select target object links from the scene URDF, set the robot’s

initial position, and specify the desired action types. The task
builder then creates an instance of the data generation pipeline,
integrating subsequent modules to procedually generate whole-
body motion trajectories. For enhanced data diversity, the task
builder supports data augmentation via the Conditional Scene
Sampler (see Sec. II-B). This feature facilitates the training and
evaluation of embodied AI models in complex environments
by generating varied scenarios from a single task definition.

B. Conditional Scene Sampler
The conditional scene sampler generates diverse initial

configurations for data augmentation by randomizing object
and robot positions and orientations. It produces variations
dependent on the original scene’s object relations, ensuring
physical feasibility and contextual consistency required by the
task. For instance, in a task involving picking an object from
a table, the sampler ensures the sampled objects remains on
table (see Fig. 3 orange box). This is achieved by recognizing
supporting planes for objects and the robot through analysis
of surrounding geometries.

To identify supporting planes, we parameterize a surface
plane as π “

@

nT , d, U
D

, where n PR3 is the normal vector,
d is the distance to origin, and U “ tu|u PR3u defines the
plane’s polygon outline. The most likely supporting plane πs

for a bottom surface πo is identified by solving:

argmax
πsP

ś

A
`

Us Xprojo,spUoq
˘

{ApUoq, (1)
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|Uo|

ÿ

uPUo

nT
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abs
`

niT
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c

˘
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where
ś

is a set of supporting plane candidates, Ap¨q denotes
polygon area, X computes intersection, and projo,spUoq “

tu´
`

nT
s u`ds

˘

ns|u PUou projects bottom surface points
onto the supporting plane, θd and θa are distance and angle
thresholds. Eq. (1) defines the contact ratio, while Eqs. (2)
and (3) enforce alignment and distance constraints. The com-
plete sampling procedure is detailed in Alg. 1. We utilize
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Fig. 3: Overview of the M3BenchMaker. The Task Builder allows users to specify manipulation tasks via high-level definitions using
URDF, target object link, and action. The Conditional Scene Sampler augments data by generating object and robot poses (blue outline) in
terms of their supporting planes (green outline) of target objects (red outline). The Goal Configuration Generator produces task-specific
goal poses using a pre-trained model for grasp/placement candidates. The VKC Problem Generator constructs optimization programs for
computing whole-body motion trajectories that satisfy task objectives and constraints via Virtual Kinematic Chain (VKC) [2].

Algorithm 1: Conditional Scene Sampler
Input : Target object πo, candidate planes

ś

,
thresholds θd, θa, number of samples N

Output: A set of feasible object poses S
1 S Ð H ;

// Filter candidates in terms of Eqs. (2) and (3)
2

ś

c ÐFilterSupportPlanepπo,
ś

, θd, θaq

// Determine supporting plane according to Eq. (1)
3 πs ÐCalcSupportPlanepπo,

ś

cq

4 while S.sizepq ăN do
5 pÐsamplePoseOnPolygonpπsq

// Check if sampled pose is within plane πs

6 if withinPolygonpπo, p,πsq then
7 S.addppq // add sampled pose to S

8 return S

the method in [4] to extract surface planes and solve the
optimization problem by iteratively identifying the plane that
maximizes Eq. (1) while satisfying the constraints.

C. Goal Configuration Generator

This module efficiently generates 6D end-effector poses for
grasping or placing target objects, serving as optimization
objectives for motion planning. We employ an energy-based
model to predict candidate goal configurations based on target
object geometry [21]. However, this object-centric approach,
which considers only object geometry without accounting for
the robot’s kinematic constraints or environmental contexts,
results in only a small subset of candidates being feasible for
the task. To address the computational expense of evaluating
all candidates through motion planning, we developed an
adaptive sampling algorithm that efficiently draws samples
from the candidate set, significantly accelerating the motion
generation process.

Detailed in Alg. 2, our algorithm iteratively selects and
updates the sampling probability of candidates based on their
feasibility scores. It utilizes a K-D tree for efficient neighbor

Algorithm 2: Adaptive Goal Sampling
Input : candidate set C
Output: goal configuration g

1 T ÐKDTreepCq

2 scoresÐinitFeasibilityScorepCq

3 while feasible goal not found do
// calculate probability for each candidate

4 probsÐcalcSamplingProbpC, scoresq

// draw a single condidate index from distribution
5 iÐdrawSamplepC, probsq

// Check feasibility of sampled candidate
6 if checkFeasibilitypCrisq then

// found feasible configuration
7 g Ð Cris
8 break

// Update feasibility scores in neighbors
9 neighborsÐT.GetNeighborspCrisq

10 scoresrneighborss Ð scoresrneighborssˆ0.5
// update K-D tree and remove checked candidate

11 T ÐUpdateKDTreepT, Crisq
12 C.removepiq

13 return g

search and initializes feasibility scores using the candidates’
energy values. When a candidate fails the feasibility check,
the feasibility scor es of its neighbors, identified via the K-D
tree within a specified distance, are halved during the update.
By concentrating sampling in promising regions of the goal
configuration space while maintaining exploration, the algo-
rithm significantly reduces the number of expensive feasibility
checks required to identify viable goal configurations.

D. VKC Problem Generator

The VKC problem generator automates the construction of
motion planning programs, formulating comprehensive opti-
mization problems that encapsulate all necessary constraints
and objectives for computing whole-body motion trajectories,
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utilizing task specifications, URDF, and goal configurations
from preceding modules. We employ the VKC approach [2]
to solve for whole-body motion of mobile manipulators,
modeling the mobile base, robot arm, and manipulated object
as a unified system, achieving superior foot-arm coordination
through simultaneous optimization and surpassing traditional
methods that separate base and arm planning.

Our implementation follows TrajOpt and ROS-Industrial
Tesseract conventions [32], effectively incorporating kine-
matic constraints while avoiding large-space searches. The
trajectory optimization minimizes joint travel distances and
overall smoothness, with inequality constraints for joint lim-
its, collision avoidance, and end-effector pose reaching. We
adopt a sequential convex optimization method [24] to solve
the resulting problem, yielding feasible, coordinated whole-
body motion trajectories for diverse mobile manipulation tasks
without manual task-specific planner programming.

By automating these processes, M3BenchMaker empowers
researchers to efficiently collect tailored whole-body motion
trajectories, significantly advancing embodied AI in complex
3D environments.

III. THE M3BENCH

The M3Bench aims to advance robot capabilities in coordi-
nating whole-body movements within complex environments,
inspired by human ability to seamlessly perform such tasks.
It challenges mobile manipulators to generate coordinated
whole-body motion trajectories for picking or placing ev-
eryday objects in 3D scenes, requiring agents to jointly un-
derstand their embodiment, environmental contexts, and task
objectives from 3D scans.

A. Simulation Environment

Simulation Platform. Our benchmark, built on Isaac
Sim [22], provides a high-fidelity physics simulation that
meticulously models real-world properties and interactions.
This platform enables precise evaluation of motion trajec-
tory feasibility, grasping abilities, and the complex interplay
between mobility and manipulation. Additionally, it could
generate rich perceptual data (e.g., RGB-D image) that closely
mimics the sensory input available to real-world robots.

Scene and Robot Configuration. The benchmark com-
prises 119 diverse household scenes containing 32 types of ob-
jects, curated from PhyScene [33]. These interactive 3D scenes
are enhanced with physical properties and rich materials for
photo-realistic and physics-realistic simulation. For the robot,
we employ a common mobile manipulator configuration: a 7-
DoF Kinova Gen3 robotic arm with a parallel gripper, mounted
on an omnidirectional mobile base. This setup facilitates
complex manipulations requiring coordinated base and arm
movements.

B. Task Design and Variations

M3Bench focuses on two primary object rearrangement
tasks: picking and placing. Given a 3D point cloud of the
scene, a mask of the target object, and its initial configuration,

TABLE II: Number of pick/place
task samples in each data split.

Split Pick Place

Train 14,793 7,478
Val 948 479
Test 3,225 1,630
Novel Object 688 397
Novel Scene 762 369
Novel Scenario 204 77

Total 20,620 10,430

TABLE III: Number of rooms
and target objects in M3Bench

Statistics Value

Bathroom 132
Bedroom 198
Kitchen 97
Living room 129
Total scenes 119

Object types 32
Total objects 588

the robot must generate whole-body motion trajectories to
manipulate the object. The tasks are defined as: (i) Pick
tasks: Navigate to, reach, and grasp a specified object from
its initial location; (ii) Place tasks: Transport a held object
to a designated location and place it stably. Success in both
tasks requires avoiding collisions along the trajectory and
maintaining the desired goal state for 2 seconds.

The task pool encompasses a wide range of mobile ma-
nipulation scenarios, featuring 32 object types with varying
properties across 119 diverse household scenes. Each scene
presents unique layouts, furniture arrangements, and obstacle
configurations. Tasks are generated by selecting appropriate
objects and placement locations based on scene categories. We
employ the conditional scene sampler (Sec. II-B) to generate
various initial configurations, further challenging the robot to
generate coordinated whole-body motions while adapting to
environmental constraints and task objectives.

C. Data Collection

Demonstration Generation. We utilized our developed
M3BenchMaker to generate demonstrations for each task. The
tool takes as input the scene and robot URDF, target object
link, and task type (pick or place), then generates a whole-body
motion trajectory for the robot. The optimization program
in M3BenchMaker ensures these trajectories are collision-
free and kinematically feasible. Each trajectory is then ver-
ified for physical feasibility in Isaac Sim, with only valid
demonstrations and their corresponding tasks included in the
benchmark. In total, we collected 30k valid demonstrations,
each containing 30 waypoints.

Additional Metadata. To facilitate embodied AI research,
we provide comprehensive metadata for each task (see Fig. 4).
This includes annotations for all links in the scene URDF, cov-
ering object categories and simulation properties. We employ
a template-based approach with lexicalized phrase candidates
to generate language instructions for each task. For example,
the template “Pick [object] in [room] on [position]” might
be realized as “Pick the cup in the living room on the
dining table”. During task execution, Isaac Sim’s built-in
rendering capabilities, combined with annotated information,
generate pixel-accurate semantic and instance segmentations
along with egocentric camera views. This rich combination of
annotations, trajectory data, and language instructions creates
a comprehensive resource for exploring various aspects of
embodied intelligence.
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Target
object

Language Task Description

dinningtable_78_link
•category:
  dinning table
•articulated:
  False
•movable:
  True
•enable_collision
  True ...

cup_55_link
•category:
  cup
•articulated:
  False
•movable:
  True
•enable_collision
  True ...

room_37_link
•category:
  living room
•articulated:
  False
•movable:
  False
•enable_collision
  False ...

Position
Room

Pick the cup on the dinning table in living room

(a) An example of URDF annotation and language task description.
RGB Image Depth Image Point Cloud Panoptic Mask

t t+1 t+2
(b) An example of sequential egocentric views.

Fig. 4: An illustration of metadata.

D. Benchmark

Data Split and Statistics. The tasks in M3Bench are
carefully divided into several splits to assess different aspects
of generalization capabilities. Objects and scenes are randomly
categorized into seen and unseen subsets. The primary eval-
uation set, the Base split, encompasses all seen objects and
scenes, divided into Train (75%), Val (5%), and Test (20%)
sets. Three additional splits challenge model generalization:
Novel Object (unseen objects in seen scenes), Novel Scene
(seen objects in unseen scenes), and Novel Scenario (unseen
objects in unseen scenes). Tables II and III present detailed
statistics of these splits and task configurations, enabling
systematic evaluation of model generalization across various
dimensions of mobile manipulation in 3D scenes.

Metrics. We employ a multi-faceted approach to evaluate
motion generation models. Task success rate serves as the
primary metric, determined by the robot’s ability to complete
specified tasks and maintain the desired state for 2 seconds,
as verified by the Isaac Sim physics engine. We also measure
the closest distance from the end-effector to the target as
an auxiliary metric, reflecting the trajectory’s effectiveness in
reaching the object or placement location. To assess trajectory
quality, we utilize several quantitative measures: environment
collision, self-collision, joint limit violation, and trajectory
solving time. This comprehensive set of metrics evaluates
models’ capabilities in generating effective and efficient mo-
tion trajectories for mobile manipulation in 3D scenes.

IV. EXPERIMENTS

A. Experimental Setup

Models for M3Bench. Due to the lack of existing models
for whole-body motion generation in mobile manipulation
within 3D scenes, we adapt five state-of-the-art approaches
to our benchmark:

‚ ModMP[O]: Integrates a VKC motion planner [2] with
grasp pose predictor [21] and heuristic placement.

‚ ModMP[S]: Similar to ModMP[O], we replace the planer
with a sampling-based planner RRT-Connect [34].

‚ MπNet [25]: Extended from stationary to mobile manip-
ulation by incorporating whole-body joint generation and
Signed Distance Function (SDF) [35] for collision loss
computation in complex 3D scans.

‚ MπFormer: A skill transformer [36] variant using Point-
Net++ [37] for 3D scan processing and decision trans-
former architecture [38] for enhanced sequence modeling.

‚ MDiffusion: Utilizes a conditional diffusion model [39],
encoding 3D scans with a Point Transformer [40] and
employing a cross-attention module to predict denoising
scores conditioned on 3D features.

Implementation Details. For MπNet, MDiffusion and
MπFormer, we generate 3D scans from scene URDF. To
enhance learning tractability, we apply a perception bounding
box around the robot and target object to crop the scans,
focusing the model’s attention on relevant spatial information.
We train MπNet, MDiffusion and MπFormer on the Train
split and perform model selection on Val. In constrast, as
ModMP[O]and ModMP[S] does not involve learning proce-
dure, we evaluate it directly on the Test and Novel splits.
To simplify the optimization problem in ModMP[O] and
ModMP[S], we ignore collisions between the end-effector and
target object during motion planning, as considering these
collisions would frequently result in infeasible trajectories.

B. Experimental Results

The experimental results are summarized in Tab. IV.
Trajectories are evaluated in Isaac Sim using metrics de-
scribed in Sec. III-D. Particularly, for the ModMP[O] and
ModMP[S] model, when motion planning fails to solve the
problem (i.e., optimization does not converge), we consider it
as a failure instance.

Across Models. ModMP[O] consistently outperforms other
approaches in most pick-and-place tasks, achieving higher
success rates and closer distances to the goal. This supports
our hypothesis that integrating conventional motion planning
with affordance prediction could generalize across diverse 3D
scenes. While the performance of the sampling-based planner
ModMP[S] is comparable to that of the optimization-based
planner ModMP[O], it requires significantly more time to find
solutions. However, ModMP[O]’s superior performance also
comes at the cost of increased computation time, driven by the
optimization complexity in large-scale 3D environments. Its
effectiveness also heavily depends on the quality of predicted
grasp and placement poses; inaccurate predictions can result in
optimization failures or environmental collisions (see Fig. 2a).
Although ModMP[O] shows promising results, the overall
low success rates suggest that integrating conventional motion
planning with affordance prediction alone is insufficient for
robust performance.

In contrast, learning-based models are more time-efficient
but often fail to generate feasible solutions in unseen scenarios.
Specifically, while MDiffusion achieves comparable perfor-
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TABLE IV: Quantitative results on M3Bench, measured by success rate (Succ), distance to goal (Dist), joint violation rate (J.Vio), environment
collision rate (E.Coll), self-collision rate (S.Coll), and execution time (Time). Best performance is shown in bold.

Test Split Method
Pick Task Place Task

Succ(%)Ò Dist(m)Ó JVio(%)Ó EnvColl(%)Ó SelfColl(%)Ó Time(s)Ó Succ(%)Ò Dist(m)Ó JVio(%)Ó EnvColl(%)Ó SelfColl(%)Ó Time(s)Ó

Base
Test

MπNet 0.07 0.34 20.79 16.53 0.36 0.48 0.80 1.68 34.67 42.75 1.24 0.59
MπFormer 0.00 1.36 0.00 44.58 0.00 0.93 0.15 0.92 0.15 23.38 0.00 1.16
MDiffusion 18.12 0.04 0.59 19.09 0.53 0.48 5.83 0.04 0.36 39.67 0.32 0.47
ModMP[S] 16.90 0.03 0.00 12.13 0.00 87.53 1.98 0.31 0.00 3.58 0.00 89.74
ModMP[O] 20.13 0.01 0.00 9.70 0.00 19.63 2.76 0.29 0.00 2.65 0.00 28.58

Novel
Object

MπNet 0.15 0.34 29.07 22.38 0.44 0.47 0.76 1.55 35.26 45.84 0.00 0.59
MπFormer 0.44 1.39 0.00 53.49 0.00 0.94 0.25 0.70 0.00 31.74 0.00 1.16
MDiffusion 9.30 0.05 0.15 37.24 0.00 0.45 1.26 0.06 0.50 35.32 0.00 0.44
ModMP[S] 18.39 0.01 0.00 19.75 0.00 88.65 3.41 0.14 0.00 4.53 0.00 88.31
ModMP[O] 21.80 0.00 0.00 13.15 0.00 18.74 5.10 0.12 0.00 0.00 0.00 29.89

Novel
Scene

MπNet 0.00 0.42 13.73 43.88 0.13 0.48 0.84 2.31 41.78 45.96 4.18 0.59
MπFormer 0.00 2.06 0.00 60.13 0.00 0.93 0.00 1.04 0.00 13.65 0.00 1.17
MDiffusion 7.25 0.04 0.13 38.53 0.13 0.48 1.95 0.07 0.28 45.13 0.00 0.44
ModMP[S] 19.20 0.02 0.00 13.27 0.00 89.10 7.80 0.23 0.00 3.49 0.00 88.93
ModMP[O] 25.59 0.00 0.00 10.82 0.00 20.13 9.76 0.18 0.00 1.10 0.00 27.39

Novel
Scenario

MπNet 0.00 0.61 16.67 25.49 0.00 0.47 0.00 2.74 16.88 9.09 1.30 0.59
MπFormer 0.00 2.58 0.00 70.59 0.00 0.92 0.00 1.68 9.09 12.99 0.00 1.17
MDiffusion 5.88 0.04 0.00 26.76 0.00 0.46 2.60 0.04 0.00 7.49 0.00 0.45
ModMP[S] 20.12 0.02 0.00 14.97 0.00 89.32 4.31 0.38 0.00 2.67 0.00 89.19
ModMP[O] 23.94 0.00 0.00 11.81 0.00 19.49 6.52 0.25 0.00 0.00 0.00 28.31

mance to planning-based methods, its success drops signifi-
cantly in the Novel splits. Additionally, unlike planning-based
methods that enforce hard constraints, learning-based ap-
proaches frequently produce trajectories that violate joint limi-
tations and are more prone to collisions. Moreover, MπNet and
MπFormer barely achieve any success in the test splits. This
result suggests that directly adapting stationary manipulation
models to mobile manipulation tasks in 3D scenes is infeasible
unless the underlying model is powerful enough to capture
the complexity of the 3D environment and associated tasks.
These findings highlight the persistent challenge of efficiently
generating whole-body motion trajectories in complex 3D
environments and emphasize the need for further research to
develop more sophisticated models for mobile manipulation
tasks.

Across Tasks. The experiment results reveal distinct per-
formance patterns between pick and place tasks. While
ModMP[O] maintains better performance in both tasks, its
success rates significantly drop in place tasks, and all mod-
els require more time to generate trajectories for the place
tasks. This discrepancy suggests that generating coordinated
whole-body motion trajectories for placing objects is more
challenging than for picking objects, as it involves additional
constraints such as stable placement locations, appropriate ob-
ject orientation, and reachable motion trajectory. The increased
complexity of place tasks explains the lower success rates and
longer execution times observed across all models.

On Generalization. While MDiffusion achieves compa-
rable performance to planning-based methods in the Base
split, its performance deteriorates in the Novel splits,indicating
persistent generalization challenges for learning-based models.
Particularly, the distance to goal in unfamiliar scenes (Novel
Scene and Novel Scenario splits) exceeds that of the Novel
Object split, suggesting that the impact of novel scenes is more
significant than novel objects. The conventional planning-
based method, in contrast, maintains consistent performance
across all splits, though its relatively low success rates across

the board underscore the inherent complexity of mobile ma-
nipulation tasks in diverse household environments.

Remarks. Our experiments reveal two crucial insights:
‚ Although combining motion planning with affordance

prediction demonstrates consistent performance across all
splits, its overall success rates remain low. This highlights
the limitations of even advanced hybrid approaches in ad-
dressing the challenges of mobile manipulation in diverse
3D scenes, emphasizing the need for models capable of
holistically solving such complex tasks.

‚ Mobile manipulation tasks demand learning-based mod-
els with significantly greater expressiveness and gener-
alization than stationary manipulation tasks. Their poor
performance in unseen scenarios (i.e., the Novel splits)
underscores the need for advancements in two key areas:
(a) developing fine-grained representations of perceptual
inputs to better capture the complexity of 3D envi-
ronments, and (b) designing more sophisticated models
for continuous whole-body motions to generate feasible
trajectories in challenging scenarios.

V. CONCLUSION

We introduced M3Bench, a comprehensive benchmark for
whole-body motion generation in mobile manipulation tasks
across diverse 3D environments, featuring 30k object rear-
rangement tasks in 119 household scenes. M3Bench pro-
vides a standardized platform for both planning and learning
communities. Through comprehensive evaluations of state-
of-the-art models, we highlighted the persistent challenges
in generating coordinated base-arm motion trajectories that
satisfy both environmental constraints and task objectives.
Furthermore, we developed M3BenchMaker, a tool designed to
efficiently generate whole-body motion trajectories from high-
level instructions, which can serve as a valuable resource for
researchers in their own studies. We hope M3Bench opens new
opportunities for robotics research and catalyzes progress to-
ward developing more adaptive and capable embodied agents.
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